Diophantine equations with products of consecutive terms in Lucas sequences

被引:22
|
作者
Luca, F
Shorey, TN
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Lucas sequences; primitive divisors; arithmetic progressions;
D O I
10.1016/j.jnt.2004.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that if (u(n))(n) >= 1 is a Lucas sequence, then the Diophantine equation u(n) (.) u(n+1) (.....) u(n+k) = y(m) in integers n >= 1, k >=, 4, m >= 2 and y with vertical bar y vertical bar > 1 has only finitely many solutions. We also determine all such solutions when (u(n))(n >= 1) is the sequence of Fibonacci numbers and when u(n) = (x(n) - 1)/(x - 1) for all n >= 1 with some integer x > 1. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 311
页数:14
相关论文
共 50 条
  • [11] Multiplicative Diophantine equations with factors from different Lucas sequences
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2017, 170 : 282 - 301
  • [12] On the GCD-s of k consecutive terms of Lucas sequences
    Hajdu, L.
    Szikszai, M.
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 3056 - 3069
  • [13] Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers
    Bitim, Bahar Demirturk
    Keskin, Refik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 451 - 459
  • [14] DIOPHANTINE REPRESENTATION OF LUCAS SEQUENCES
    MCDANIEL, WL
    FIBONACCI QUARTERLY, 1995, 33 (01): : 59 - 63
  • [15] Perfect powers from products of terms in Lucas sequences
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 : 109 - 129
  • [16] Diophantine equations with products of consecutive members of binary recurrences
    Berczes, Attila
    Bilu, Yuri F.
    Luca, Florian
    RAMANUJAN JOURNAL, 2018, 46 (01): : 49 - 75
  • [17] Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences
    Keskin, Refik
    Demirturk, Bahar
    ARS COMBINATORIA, 2013, 111 : 161 - 179
  • [18] Diophantine equations with products of consecutive members of binary recurrences
    Attila Bérczes
    Yuri F. Bilu
    Florian Luca
    The Ramanujan Journal, 2018, 46 : 49 - 75
  • [19] Diophantine equations with products of consecutive values of a quadratic polynomial
    Yang, Shichun
    Togbe, Alain
    He, Bo
    JOURNAL OF NUMBER THEORY, 2011, 131 (10) : 1840 - 1851
  • [20] Diophantine equations involving the bi-periodic Fibonacci and Lucas sequences
    Ait-Amrane, Lyes
    Behloul, Djilali
    Djoumakh, Akila
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 129 - 152