Diophantine equations with products of consecutive terms in Lucas sequences

被引:22
|
作者
Luca, F
Shorey, TN
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Lucas sequences; primitive divisors; arithmetic progressions;
D O I
10.1016/j.jnt.2004.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that if (u(n))(n) >= 1 is a Lucas sequence, then the Diophantine equation u(n) (.) u(n+1) (.....) u(n+k) = y(m) in integers n >= 1, k >=, 4, m >= 2 and y with vertical bar y vertical bar > 1 has only finitely many solutions. We also determine all such solutions when (u(n))(n >= 1) is the sequence of Fibonacci numbers and when u(n) = (x(n) - 1)/(x - 1) for all n >= 1 with some integer x > 1. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 311
页数:14
相关论文
共 50 条
  • [41] ELLIPTIC DIVISIBILITY SEQUENCES AND CERTAIN DIOPHANTINE EQUATIONS
    Yabuta, Minoru
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1339 - 1352
  • [42] DIOPHANTINE EQUATIONS AND THE LIL FOR THE DISCREPANCY OF SUBLACUNARY SEQUENCES
    Aistleitner, Christoph
    ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (03) : 785 - 815
  • [43] Markov Type Equations with Solutions in Lucas Sequences
    Alaa Altassan
    Florian Luca
    Mediterranean Journal of Mathematics, 2021, 18
  • [44] Sum of Products of Cubes of Consecutive Lucas Numbers Solution
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2020, 58 (02): : 181 - 182
  • [45] Sums or products of double factorials in Lucas sequences
    Zhang, Shaonan
    Yang, Peng
    Cai, Tianxin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 1943 - 1965
  • [46] Sum of Products of Cubes of Consecutive Lucas Numbers Proposal
    Davenport, Kenny B.
    FIBONACCI QUARTERLY, 2020, 58 (02): : 181 - 181
  • [47] ON GEOMETRIC PROGRESSIONS ON PELL EQUATIONS AND LUCAS SEQUENCES
    Berczes, Attila
    Ziegler, Volker
    GLASNIK MATEMATICKI, 2013, 48 (01) : 1 - 22
  • [48] Markov Type Equations with Solutions in Lucas Sequences
    Altassan, Alaa
    Luca, Florian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [49] On members of Lucas sequences which are products of factorials
    Shanta Laishram
    Florian Luca
    Mark Sias
    Monatshefte für Mathematik, 2020, 193 : 329 - 359
  • [50] On members of Lucas sequences which are products of factorials
    Laishram, Shanta
    Luca, Florian
    Sias, Mark
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 329 - 359