ON GEOMETRIC PROGRESSIONS ON PELL EQUATIONS AND LUCAS SEQUENCES

被引:0
|
作者
Berczes, Attila [1 ,2 ]
Ziegler, Volker [3 ]
机构
[1] Univ Debrecen, Inst Math, Hungarian Acad Sci, Number Theory Res Grp, H-4010 Debrecen, Hungary
[2] Univ Debrecen, H-4010 Debrecen, Hungary
[3] Graz Univ Technol, Inst Anal & Computat Number Theory, A-8010 Graz, Austria
关键词
Pell equations; geometric progressions; elliptic curves; ARITHMETIC PROGRESSIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider geometric progressions on the solution set of Pell equations and give upper bounds for such geometric progressions. Moreover, we show how to find for a given four term geometric progression a Pell equation such that this geometric progression is contained in the solution set. In the case of a given five term geometric progression we show that at most finitely many essentially distinct Pell equations exist, that admit the given five term geometric progression. In the last part of the paper we also establish similar results for Lucas sequences.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Arithmetic progressions on Pell equations
    Petho, A.
    Ziegler, V.
    JOURNAL OF NUMBER THEORY, 2008, 128 (06) : 1389 - 1409
  • [2] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [3] New Approach to Pell and Pell-Lucas Sequences
    Yagmur, Tulay
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 23 - 34
  • [4] On the intersection of Padovan, Perrin sequences and Pell, Pell-Lucas sequences
    Rihane, Salah Eddine
    Togbe, Alain
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 57 - 71
  • [5] INTEGRATION AND DERIVATIVE SEQUENCES FOR PELL AND PELL-LUCAS POLYNOMIALS
    HORADAM, AF
    SWITA, B
    FILIPPONI, P
    FIBONACCI QUARTERLY, 1994, 32 (02): : 130 - 135
  • [6] On arithmetic progressions in Lucas sequences - II
    Szikszai, Marton
    Ziegler, Volker
    JOURNAL OF NUMBER THEORY, 2019, 201 : 354 - 376
  • [7] Powers in products of terms of Pell's and Pell-Lucas sequences
    Bravo, Jhon J.
    Das, Pranabesh
    Guzman, Sergio
    Laishram, Shanta
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (04) : 1259 - 1274
  • [8] On sequences without geometric progressions
    Brown, BE
    Gordon, DM
    MATHEMATICS OF COMPUTATION, 1996, 65 (216) : 1749 - 1754
  • [9] On the (s, t)-Pell and (s, t)-Pell-Lucas sequences and their matrix representations
    Gulec, Hasan Huseyin
    Taskara, Necati
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1554 - 1559
  • [10] On matrix sequences represented by negative indices Pell and Pell-Lucas number with the decoding of lucas blocking error correcting codes
    Khompurngson, Kannika
    Sompong, Supunnee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)