ON GEOMETRIC PROGRESSIONS ON PELL EQUATIONS AND LUCAS SEQUENCES

被引:0
|
作者
Berczes, Attila [1 ,2 ]
Ziegler, Volker [3 ]
机构
[1] Univ Debrecen, Inst Math, Hungarian Acad Sci, Number Theory Res Grp, H-4010 Debrecen, Hungary
[2] Univ Debrecen, H-4010 Debrecen, Hungary
[3] Graz Univ Technol, Inst Anal & Computat Number Theory, A-8010 Graz, Austria
关键词
Pell equations; geometric progressions; elliptic curves; ARITHMETIC PROGRESSIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider geometric progressions on the solution set of Pell equations and give upper bounds for such geometric progressions. Moreover, we show how to find for a given four term geometric progression a Pell equation such that this geometric progression is contained in the solution set. In the case of a given five term geometric progression we show that at most finitely many essentially distinct Pell equations exist, that admit the given five term geometric progression. In the last part of the paper we also establish similar results for Lucas sequences.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] On Y-coordinates of Pell equations which are Lucas numbers
    Edjeou, Bilizimbeye
    Faye, Bernadette
    Gomez, Carlos A.
    Luca, Florian
    RAMANUJAN JOURNAL, 2022, 59 (04): : 1091 - 1136
  • [22] SUMS AND PRODUCTS INVOLVING TERMS OF k-PELL, k-PELL-LUCAS AND MODIFIED k-PELL SEQUENCES
    Vasco, Paulo
    Catarino, Paula
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 32 (02): : 87 - 98
  • [23] Pell and Lucas primes
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (03) : 64 - 69
  • [24] Pell and Pell-Lucas hybrid quaternions
    Kuruz, Ferhat
    Dagdeviren, Ali
    FILOMAT, 2023, 37 (25) : 8425 - 8434
  • [25] PERFECT PELL AND PELL-LUCAS NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 381 - 387
  • [26] On Pell, Pell-Lucas, and balancing numbers
    Gül Karadeniz Gözeri
    Journal of Inequalities and Applications, 2018
  • [27] CONICS CHARACTERIZING THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES WITH INDICES IN ARITHMETIC PROGRESSIONS
    Kilic, Emrah
    Omur, Nese
    ARS COMBINATORIA, 2010, 94 : 459 - 464
  • [28] On Pell Quaternions and Pell-Lucas Quaternions
    Cimen, Cennet Bolat
    Ipek, Ahmet
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 39 - 51
  • [29] Split Pell and Pell-Lucas Quaternions
    Tokeser, Umit
    Unal, Zafer
    Bilgici, Goksal
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1881 - 1893
  • [30] On Generalized Pell and Pell-Lucas Numbers
    Trojnar-Spelina, Lucyna
    Wloch, Iwona
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2871 - 2877