Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences

被引:0
|
作者
Keskin, Refik [1 ]
Demirturk, Bahar [1 ]
机构
[1] Sakarya Univ, Fac Sci & Arts, Dept Math, TR-54187 Sakarya, Turkey
关键词
Fibonacci number; Lucas number; Binet formula; Diophantine equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we deal with some Diophantine equations. By using the generalized Fibonacci and Lucas sequences, we obtain all integer solutions of some Diophantine equations such as x(2) - kxy - y(2) = -/+ 1, x(2) - kxy + y(2) = 1, x(2) - kxy - y(2) = -/+(k(2) + 4), x(2) - (k(2) + 4)xy + (k(2) + 4)y(2) = -/+ k(2), x(2) - kxy + y(2) = -(k(2) - 4), and x(2) - (k(2) - 4)xy - (k(2) - 4)y(2) = k(2). Some of the results are known but we think that our proofs are new and different from the others.
引用
收藏
页码:161 / 179
页数:19
相关论文
共 50 条
  • [1] Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers
    Bitim, Bahar Demirturk
    Keskin, Refik
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 451 - 459
  • [2] ON SOME DIOPHANTINE EQUATIONS INVOLVING GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Ait-Amrane, Lyes
    Behloul, Djilali
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 150 (02) : 257 - 268
  • [3] Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers
    Demirturk, Bahar
    Keskin, Refik
    [J]. JOURNAL OF INTEGER SEQUENCES, 2009, 12 (08)
  • [4] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338
  • [5] SOME SUBSEQUENCES OF THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Kilic, Emrah
    Kilic, Elif Tan
    [J]. UTILITAS MATHEMATICA, 2015, 97 : 233 - 239
  • [6] Squares in Lucas sequences and¶some Diophantine equations
    Takaaki Kagawa
    Nobuhiro Terai
    [J]. manuscripta mathematica, 1998, 96 : 195 - 202
  • [7] Some identities of the generalized Fibonacci and Lucas sequences
    Yang, Jizhen
    Zhang, Zhizheng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 451 - 458
  • [8] Squares in Lucas sequences and some Diophantine equations
    Kagawa, T
    Terai, N
    [J]. MANUSCRIPTA MATHEMATICA, 1998, 96 (02) : 195 - 202
  • [9] GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS
    ANTONIADIS, JA
    [J]. FIBONACCI QUARTERLY, 1985, 23 (03): : 199 - 213
  • [10] Diophantine equations involving the bi-periodic Fibonacci and Lucas sequences
    Ait-Amrane, Lyes
    Behloul, Djilali
    Djoumakh, Akila
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 129 - 152