Monotonicity and convexity involving generalized elliptic integral of the first kind

被引:0
|
作者
Tie-Hong Zhao
Miao-Kun Wang
Yu-Ming Chu
机构
[1] Hangzhou Normal University,Department of Mathematics
[2] Huzhou University,Department of Mathematics
关键词
Monotonicity; Convexity; Generalized elliptic integral; Ramanujan constant; 33E05; 33C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_a(r)$$\end{document} and its approximation log[1+2/(ar′)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log [1+2/(ar')]$$\end{document}, and also the convexity (concavity) of their difference for a∈(0,1/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1/2]$$\end{document}. As an application, we give new bounds for generalized Grötzsch ring function μa(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _a(r)$$\end{document} and a upper bound for Ka(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_a(r)$$\end{document}.
引用
收藏
相关论文
共 50 条