A MONOTONICITY THEOREM FOR THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND

被引:1
|
作者
Bao, Qi [1 ]
Ren, Xue-Jing [2 ]
Wang, Miao-Kun [3 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Jiangsu, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
Generalized elliptic integrals; Complete elliptic integrals; Psi function; INEQUALITIES;
D O I
10.2298/AADM201005031B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a E (0, 1/2] and r E (0, 1), let Xa(r) (X (r)) denote the generalized elliptic integral (complete elliptic integral, respectively) of the first kind. In this article, we mainly present a sufficient and necessary condition under which the function a 7 -> [X (r) - Xa(r)]/(1 - 2a)lambda(lambda E R) is monotone on (0, 1/2) for each fixed r E (0, 1). The obtained result leads to the conclusion that inequalityX (r) - (1 - 2a)alpha [X (r) - pi ] < Xa(r) < X (r) - (1 - 2a)beta [X (r) - pi ] 2 2holds for all a E (0, 1/2] and r E (0, 1) with the best possible constants alpha = pi /2 and beta = 2.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 50 条