A MONOTONICITY PROPERTY INVOLVING THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND

被引:71
|
作者
Yang, Zhen-Hang [1 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
来源
关键词
Gaussian hypergeometric function; generalized elliptic integral; gamma function; psi function; monotonicity;
D O I
10.7153/mia-20-46
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the function r -> Y(r) = Ka(r) sin(pi a)r'(2)log(e(R(a)/2)/r') - 1/r'(2) is strictly increasing from (0,1) onto (p/[R(a) sin(pi a)]-1, a(1-a)) for all a is an element of (0,1/2], where r' = root 1- r(2), K-a(r) is the generalized elliptic integral of the first kind, R(a) = -2 gamma -psi(a)-psi(1-a),. is the classical psi function and gamma = 0.57721566 . . . is the Euler-Mascheroni constant.
引用
收藏
页码:729 / 735
页数:7
相关论文
共 50 条