Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind

被引:0
|
作者
Jing-Feng Tian
Zhen-Hang Yang
机构
[1] North China Electric Power University,Department of Mathematics and Physics
[2] State Grid Zhejiang Electric Power Company Research Institute,Department of Science and Technology
来源
Results in Mathematics | 2023年 / 78卷
关键词
Complete elliptic integral of the first kind; hypergeometric function; convexity; inequality; Primary 33C05; 26A51; Secondary 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
Let Kr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}\left( r\right) $$\end{document} be the complete elliptic integral of the first kind defined on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document}. By virtue of the auxiliary function Hf,g=f′/g′g-f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f,g}=\left( f^{\prime }/g^{\prime }\right) g-f$$\end{document}, we prove that the function Qpx=lnp/1-xKx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q_{p}\left( x\right) =\frac{\ln \left( p/\sqrt{1-x}\right) }{\mathcal {K} \left( \sqrt{x}\right) } \end{aligned}$$\end{document}is strictly convex on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document} if and only if 0<p≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 4$$\end{document}, thus answering a conjecture. Moreover, we completely described the monotonicity of Qpx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{p}\left( x\right) $$\end{document} on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document} for different p∈0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \left( 0,\infty \right) $$\end{document}.
引用
收藏
相关论文
共 50 条