Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind

被引:0
|
作者
Jing-Feng Tian
Zhen-Hang Yang
机构
[1] North China Electric Power University,Department of Mathematics and Physics
[2] State Grid Zhejiang Electric Power Company Research Institute,Department of Science and Technology
来源
Results in Mathematics | 2023年 / 78卷
关键词
Complete elliptic integral of the first kind; hypergeometric function; convexity; inequality; Primary 33C05; 26A51; Secondary 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
Let Kr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}\left( r\right) $$\end{document} be the complete elliptic integral of the first kind defined on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document}. By virtue of the auxiliary function Hf,g=f′/g′g-f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f,g}=\left( f^{\prime }/g^{\prime }\right) g-f$$\end{document}, we prove that the function Qpx=lnp/1-xKx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q_{p}\left( x\right) =\frac{\ln \left( p/\sqrt{1-x}\right) }{\mathcal {K} \left( \sqrt{x}\right) } \end{aligned}$$\end{document}is strictly convex on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document} if and only if 0<p≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 4$$\end{document}, thus answering a conjecture. Moreover, we completely described the monotonicity of Qpx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{p}\left( x\right) $$\end{document} on 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,1\right) $$\end{document} for different p∈0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \left( 0,\infty \right) $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Monotonicity and sharp inequalities related to complete (p, q)-elliptic integrals of the first kind
    Wang, Fei
    Qi, Feng
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (08) : 961 - 970
  • [42] Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
    Zhen-Hang Yang
    Yu-Ming Chu
    Wen Zhang
    [J]. Journal of Inequalities and Applications, 2016
  • [43] ABSOLUTELY MONOTONIC FUNCTIONS INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND WITH APPLICATIONS
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1299 - 1310
  • [44] Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Wen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [45] Approximations for the complete elliptic integral of the second Kind
    Qian, Wei-Mao
    Wang, Miao-Kun
    Xu, Hui-Zuo
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [46] Monotonicity and inequalities related to complete elliptic integrals of the second kind
    Wang, Fei
    Guo, Bai-Ni
    Qi, Feng
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 2732 - 2742
  • [47] The calculation of the complete elliptic integral of the first and second kind for large values of [k]
    van Veen, SC
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (1/5): : 171 - 175
  • [48] On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Wen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1714 - 1726
  • [49] A NECESSARY AND SUFFICIENT CONDITION FOR THE CONVEXITY OF THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND WITH RESPECT TO HOLDER MEAN
    Chu, Hong-Hu
    Wang, Wei
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 901 - 921
  • [50] Several Absolutely Monotonic Functions Related to the Complete Elliptic Integral of the First Kind
    Jing-Feng Tian
    Zhen-Hang Yang
    [J]. Results in Mathematics, 2022, 77