On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind

被引:107
|
作者
Yang, Zhen-Hang [1 ,2 ]
Qian, Wei-Mao [3 ]
Chu, Yu-Ming [1 ]
Zhang, Wen [4 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] State Grid Zhejiang Elect Power Res Inst, Customer Serv Ctr, Hangzhou 310009, Zhejiang, Peoples R China
[3] Huzhou Broadcast & TV Univ, Sch Distance Educ, Huzhou 313000, Peoples R China
[4] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
基金
中国国家自然科学基金;
关键词
Arithmetic-geometric mean; Complete elliptic integral; Gaussian hypergeometric function; Inverse hyperbolic tangent function; TRANSFORMATION INEQUALITIES; FUNCTIONAL INEQUALITIES; SHARP INEQUALITIES; MONOTONICITY; CONVEXITY; RESPECT; BOUNDS;
D O I
10.1016/j.jmaa.2018.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we prove that the double inequalities 1+(6p-7)r'/p+(5p - 6)r' pi tanh(-1)(r)/2r < kappa (r) < 1+(6q-7)r'/q+(5q-6)r'/q+(5q-6)r' pi tanh(-1)(r)/2r, qA(1,r) + (5q-6)G(1,r)/A(1,r + (6q-7)G(1,r) L (1,r) AGM (1,r) < pA(1,r) + (5p - 6)G(1,r)/A(1,r) + (6p - 7)G(1,r) L(1, r) hold for all r is an element of(0,1) if and only if p >= pi/2 = 1.570796 ... and q <= 89/69 = 1.289855 ... , where kappa(r) = integral(pi/2)(0)(1 - r(2) sin(2)t)(-1/2)dt is the complete elliptic integral of the first kind, tanh(-1) (r) = log[(1+r)/(1-r)]/2 is the inverse hyperbolic tangent function, r' = root 1-r(2), and A(1, r) = (1 + r)/2, G(1, r) = root r, L(1,r) = (r = 1 /log r and AGM(1, r) are the arithmetic, geometric, logarithmic and Gaussian arithmetic-geometric means of 1 and r, respectively. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1714 / 1726
页数:13
相关论文
共 50 条
  • [1] Optimal Bounds for Gaussian Arithmetic-Geometric Mean with Applications to Complete Elliptic Integral
    Wang, Hua
    Qian, Wei-Mao
    Chu, Yu-Ming
    [J]. JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [2] An Arithmetic-Geometric Mean of a Third Kind!
    Adlaj, Semjon
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019), 2019, 11661 : 37 - 56
  • [3] The arithmetic-geometric mean and the elliptic mean error
    D. Monhor
    [J]. Acta Geodaetica et Geophysica Hungarica, 2003, 38 (1): : 53 - 60
  • [4] ARITHMETIC-GEOMETRIC MEAN
    PEREZ, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03): : 262 - 264
  • [5] ELLIPTIC FILTER DESIGN USING ARITHMETIC-GEOMETRIC MEAN
    PARKS, GB
    SODERSTRAND, MA
    [J]. ELECTRONICS LETTERS, 1980, 16 (14) : 568 - 570
  • [6] DYNAMICS OF THE ARITHMETIC-GEOMETRIC MEAN
    BULLETT, S
    [J]. TOPOLOGY, 1991, 30 (02) : 171 - 190
  • [7] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    LUCHT, LG
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (08): : 739 - 740
  • [8] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Hassani, Mehdi
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 453 - 456
  • [9] An approximation to the arithmetic-geometric mean
    Jameson, G. J. O.
    [J]. MATHEMATICAL GAZETTE, 2014, 98 (541): : 85 - 95
  • [10] A GENERALIZATION OF THE ARITHMETIC-GEOMETRIC MEAN
    HEINRICH, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (06): : 265 - 267