A MONOTONICITY THEOREM FOR THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND

被引:1
|
作者
Bao, Qi [1 ]
Ren, Xue-Jing [2 ]
Wang, Miao-Kun [3 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Jiangsu, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
Generalized elliptic integrals; Complete elliptic integrals; Psi function; INEQUALITIES;
D O I
10.2298/AADM201005031B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a E (0, 1/2] and r E (0, 1), let Xa(r) (X (r)) denote the generalized elliptic integral (complete elliptic integral, respectively) of the first kind. In this article, we mainly present a sufficient and necessary condition under which the function a 7 -> [X (r) - Xa(r)]/(1 - 2a)lambda(lambda E R) is monotone on (0, 1/2) for each fixed r E (0, 1). The obtained result leads to the conclusion that inequalityX (r) - (1 - 2a)alpha [X (r) - pi ] < Xa(r) < X (r) - (1 - 2a)beta [X (r) - pi ] 2 2holds for all a E (0, 1/2] and r E (0, 1) with the best possible constants alpha = pi /2 and beta = 2.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 50 条
  • [31] MONOTONICITY PROPERTIES AND BOUNDS INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Chu, Yu-Ming
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 1185 - 1199
  • [32] A NECESSARY AND SUFFICIENT CONDITION FOR THE CONVEXITY OF THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND WITH RESPECT TO HOLDER MEAN
    Chu, Hong-Hu
    Wang, Wei
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 901 - 921
  • [33] A Rational Approximation for the Complete Elliptic Integral of the First Kind
    Yang, Zhen-Hang
    Tian, Jingfeng
    Zhu, Ya-Ru
    [J]. MATHEMATICS, 2020, 8 (04)
  • [34] A Natural Approximation to the Complete Elliptic Integral of the First Kind
    Zhu, Ling
    [J]. MATHEMATICS, 2022, 10 (09)
  • [35] A concavity property of the complete elliptic integral of the first kind
    Alzer, Horst
    Richards, Kendall C.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (09) : 758 - 768
  • [36] Sharp inequalities for the complete elliptic integral of the first kind
    Alzer, H
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 309 - 314
  • [37] Sharp bounds for generalized elliptic integrals of the first kind
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Song-Liang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 744 - 757
  • [38] Sharp inequalities for the generalized elliptic integrals of the first kind
    Zhen-Hang Yang
    Jingfeng Tian
    [J]. The Ramanujan Journal, 2019, 48 : 91 - 116
  • [39] Sharp inequalities for the generalized elliptic integrals of the first kind
    Yang, Zhen-Hang
    Tian, Jingfeng
    [J]. RAMANUJAN JOURNAL, 2019, 48 (01): : 91 - 116
  • [40] A new upper bound for the complete elliptic integral of the first kind
    Zhu, Ling
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)