Monotonicity and convexity involving generalized elliptic integral of the first kind

被引:0
|
作者
Tie-Hong Zhao
Miao-Kun Wang
Yu-Ming Chu
机构
[1] Hangzhou Normal University,Department of Mathematics
[2] Huzhou University,Department of Mathematics
关键词
Monotonicity; Convexity; Generalized elliptic integral; Ramanujan constant; 33E05; 33C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the monotonicity properties of the ratio between generalized elliptic integral of the first kind Ka(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_a(r)$$\end{document} and its approximation log[1+2/(ar′)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log [1+2/(ar')]$$\end{document}, and also the convexity (concavity) of their difference for a∈(0,1/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1/2]$$\end{document}. As an application, we give new bounds for generalized Grötzsch ring function μa(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _a(r)$$\end{document} and a upper bound for Ka(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_a(r)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] MONOTONICITY AND CONVEXITY OF THE RATIOS OF THE FIRST KIND MODIFIED BESSEL FUNCTIONS AND APPLICATIONS
    Yang, Zhen-Hang
    Zheng, Shen-Zhou
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 107 - 125
  • [42] Generalized monotonicity of subdifferentials and generalized convexity
    Penot, JP
    Sach, PH
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (01) : 251 - 262
  • [43] Generalized Monotonicity of Subdifferentials and Generalized Convexity
    J. P. Penot
    P. H. Sach
    [J]. Journal of Optimization Theory and Applications, 1997, 94 : 251 - 262
  • [44] Convexity of integral operators involving generalized Bessel functions
    Deniz, Erhan
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (03) : 201 - 216
  • [45] Monotonicity in the framework of generalized convexity
    Tuy, H
    [J]. GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY AND APPLICATIONS, 2005, 77 : 61 - 85
  • [46] Stability of generalized convexity and monotonicity
    An, P. T.
    [J]. MATHEMATICAL MODELING, SIMULATION, VISUALIZATION AND E-LEARNING, 2008, : 193 - 200
  • [47] NOTES ON THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Zhang, Wen
    Chu, Yu-Ming
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 77 - 93
  • [48] Approximation for the complete elliptic integral of the first kind
    Qian, Wei-Mao
    He, Zai-Yin
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [49] Approximation for the complete elliptic integral of the first kind
    Wei-Mao Qian
    Zai-Yin He
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [50] Indefinite integrals involving the incomplete elliptic integral of the third kind
    Conway, John T.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (08) : 667 - 682