Spectral properties of a class of unicyclic graphs

被引:0
|
作者
Zhibin Du
机构
[1] Zhaoqing University,School of Mathematics and Statistics
关键词
spectral radius; least eigenvalue; spread; unicyclic graphs; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalues of G are denoted by λ1(G),λ2(G),…,λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$\end{document}, where n is the order of G. In particular, λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}(G)$\end{document} is called the spectral radius of G, λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document} is the least eigenvalue of G, and the spread of G is defined to be the difference between λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G)$\end{document} and λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document}. Let U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is of degree at least three. We characterize the graphs with the kth maximum spectral radius among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document} if n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}, k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=2$\end{document} if n≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge8$\end{document}, and k=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=3,4,5$\end{document} if n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge10$\end{document}, and the graph with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On the spectral radius of unicyclic graphs with perfect matchings
    Chang, A
    Tian, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 237 - 250
  • [22] Ordering of unicyclic graphs with Laplacian spectral radii
    Liu, Ying
    Liu, Yue
    Tongji Daxue Xuebao/Journal of Tongji University, 2008, 36 (06): : 841 - 843
  • [23] Laplacian Spectral Characterization of Some Unicyclic Graphs
    Yu, Lijun
    Wang, Hui
    Zhou, Jiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [24] On the spectral moments of unicyclic graphs with fixed diameter
    Cheng, Bo
    Liu, Bolian
    Liu, Jianxi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1123 - 1131
  • [25] On the spectral radius of unicyclic graphs with fixed diameter
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 449 - 457
  • [26] On revised Szeged index of a class of unicyclic graphs
    Liu, Hechao
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (02)
  • [27] On the Spectral Moment of Quasi-Unicyclic Graphs
    WU Yaping
    GUO Huiyi
    YUAN Shuai
    WuhanUniversityJournalofNaturalSciences, 2019, 24 (06) : 510 - 514
  • [28] Order unicyclic mixed graphs by spectral radius
    Fan, Yi-Zheng
    Hong, Hai-Yan
    Gong, Shi-Cai
    Wang, Yi
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 37 : 305 - 316
  • [29] The extremal Kirchhoff index of a class of unicyclic graphs
    Guo, Qiuzhi
    Deng, Hanyuan
    Chen, Dandan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (03) : 713 - 722
  • [30] A CLASS OF UNICYCLIC GRAPHS DETERMINED BY THEIR LAPLACIAN SPECTRUM
    Shen, Xiaoling
    Hou, Yaoping
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 375 - 386