Spectral properties of a class of unicyclic graphs

被引:0
|
作者
Zhibin Du
机构
[1] Zhaoqing University,School of Mathematics and Statistics
关键词
spectral radius; least eigenvalue; spread; unicyclic graphs; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalues of G are denoted by λ1(G),λ2(G),…,λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$\end{document}, where n is the order of G. In particular, λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}(G)$\end{document} is called the spectral radius of G, λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document} is the least eigenvalue of G, and the spread of G is defined to be the difference between λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G)$\end{document} and λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document}. Let U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is of degree at least three. We characterize the graphs with the kth maximum spectral radius among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document} if n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}, k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=2$\end{document} if n≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge8$\end{document}, and k=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=3,4,5$\end{document} if n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge10$\end{document}, and the graph with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] On the spectral radius of unicyclic graphs with fixed maximum degree
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Wu, Bao-Feng
    ARS COMBINATORIA, 2011, 102 : 21 - 31
  • [42] Extremal arithmetic–geometric spectral radius of unicyclic graphs
    Baohua Niu
    Shuming Zhou
    Hong Zhang
    Qifan Zhang
    Journal of Applied Mathematics and Computing, 2023, 69 : 2315 - 2330
  • [43] EXTREMAL UNICYCLIC GRAPHS WITH MINIMAL DISTANCE SPECTRAL RADIUS
    Lu, Hongyan
    Luo, Jing
    Zhu, Zhongxun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (04) : 735 - 749
  • [44] HIGH-ORDERED SPECTRAL CHARACTERIZATION OF UNICYCLIC GRAPHS
    Fan, Yi-Zheng
    Yang, Hong-Xia
    Zheng, Jian
    arXiv, 2022,
  • [45] Unbalanced Unicyclic and Bicyclic Graphs with Extremal Spectral Radius
    Francesco Belardo
    Maurizio Brunetti
    Adriana Ciampella
    Czechoslovak Mathematical Journal, 2021, 71 : 417 - 433
  • [46] Ordering of the signless Laplacian spectral radii of unicyclic graphs
    Wei, Fi-Yi
    Liu, Muhuo
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 255 - 264
  • [47] The Least Eigenvalue of Unicyclic Graphs with Application to Spectral Spread
    Guo, Jiming
    Zhang, Gege
    Wang, Zhiwen
    Tong, Panpan
    ALGEBRA COLLOQUIUM, 2022, 29 (02) : 265 - 272
  • [48] Merrifield-Simmons index of a class of unicyclic graphs
    Chen, Shubo
    Liu, Weijun
    UTILITAS MATHEMATICA, 2012, 89 : 319 - 329
  • [49] New upper bounds on the spectral radius of unicyclic graphs
    Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile
    Linear Algebra Its Appl, 4 (754-764):
  • [50] Minimizing a class of unicyclic graphs by means of Hosoya index
    Hua, Hongbo
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (5-6) : 940 - 948