Spectral properties of a class of unicyclic graphs

被引:0
|
作者
Zhibin Du
机构
[1] Zhaoqing University,School of Mathematics and Statistics
关键词
spectral radius; least eigenvalue; spread; unicyclic graphs; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalues of G are denoted by λ1(G),λ2(G),…,λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$\end{document}, where n is the order of G. In particular, λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}(G)$\end{document} is called the spectral radius of G, λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document} is the least eigenvalue of G, and the spread of G is defined to be the difference between λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G)$\end{document} and λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document}. Let U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is of degree at least three. We characterize the graphs with the kth maximum spectral radius among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document} if n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}, k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=2$\end{document} if n≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge8$\end{document}, and k=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=3,4,5$\end{document} if n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge10$\end{document}, and the graph with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] HIGH-ORDERED SPECTRAL CHARACTERIZATION OF UNICYCLIC GRAPHS
    Fan, Yi-zheng
    Yang, Hong-xia
    Zheng, Jian
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 1107 - 1141
  • [32] On the spectral radii of unicyclic graphs with fixed matching number
    Guo, Ji-Ming
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6115 - 6131
  • [33] First zagreb spectral radius of unicyclic graphs and trees
    Das, Parikshit
    Das, Kinkar Chandra
    Mondal, Sourav
    Pal, Anita
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (01)
  • [34] On the Laplacian Spectral Radius of Unicyclic Graphs with Fixed Diameter
    Guo, Shu-Guang
    ARS COMBINATORIA, 2012, 106 : 47 - 58
  • [35] Spectral radius of unicyclic graphs with given independence number
    Feng, Lihua
    Yu, Guihai
    UTILITAS MATHEMATICA, 2011, 84 : 33 - 43
  • [36] New upper bounds on the spectral radius of unicyclic graphs
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 754 - 764
  • [37] ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH PERFECT MATCHINGS
    Zhang, Xiao Ling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 569 - 587
  • [38] On the spectral radius of unicyclic graphs with prescribed degree sequence
    Belardo, Francesco
    Li Marzi, Enzo M.
    Simic, Slobodan K.
    Wang, Jianfeng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2323 - 2334
  • [39] ON THE SECOND LARGEST SPECTRAL RADIUS OF UNICYCLIC BIPARTITE GRAPHS
    Nath, Milan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 253 - 258
  • [40] UNBALANCED UNICYCLIC AND BICYCLIC GRAPHS WITH EXTREMAL SPECTRAL RADIUS
    Belardo, Francesco
    Brunetti, Maurizio
    Ciampella, Adriana
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 417 - 433