On revised Szeged index of a class of unicyclic graphs

被引:1
|
作者
Liu, Hechao [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Revised Szeged index; conjugated unicyclic graph; HEXAGONAL CHAINS; WIENER INDEX; RESPECT;
D O I
10.1142/S1793830921501159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing topological indices of graphs is a fundamental and classical topic. Let G be a connected graph. The revised Szeged index S-z*(G) is defined as S-z*(G) = Sigma(e=uv)(is an element of E)((G))(n(u)(e vertical bar G) + n(0)(e vertical bar G)/2) (n(v) (e vertical bar G) + n(0) (e vertical bar G)/2), where n(u) (e vertical bar G) (respectively, n(v) (e vertical bar G) is the number of vertices whose distance to vertex u (respectively, v) is smaller than the distance to vertex v (respectively, u), and n(0)(e vertical bar G) is the number of vertices equidistant from both ends of e. In this paper, we determine the smallest revised Szeged index among all conjugated unicyclic graphs (i.e., unicyclic graphs with perfect matchings), and the corresponding extremal graphs are characterized.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SZEGED INDEX OF A CLASS OF UNICYCLIC GRAPHS
    Qi, Xuli
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1139 - 1155
  • [2] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [3] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [4] Edge Szeged Index of Unicyclic Graphs
    Cai, Xiaochun
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 133 - 144
  • [5] The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index
    He, Shengjie
    Geng, Qiaozhi
    Hao, Rong-Xia
    AIMS MATHEMATICS, 2023, 8 (11): : 26301 - 26327
  • [6] On the Edge-Szeged index of unicyclic graphs
    Li, Jianping
    ARS COMBINATORIA, 2021, 154 : 265 - 282
  • [7] On revised Szeged index of graphs
    Shahani, Hossein
    Ashrafi, Ali Reza
    Gutman, Ivan
    UTILITAS MATHEMATICA, 2014, 95 : 281 - 288
  • [8] On the Szeged index of unicyclic graphs with given diameter
    Liu, Yan
    Yu, Aimei
    Lu, Mei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 118 - 130
  • [10] Steiner (Revised) Szeged Index of Graphs
    Ghorbani, Modjtaba
    Li, Xueliang
    Maimani, Hamid Reza
    Mao, Yaping
    Rahmani, Shaghayegh
    Rajabi-Parsa, Mina
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (03) : 733 - 742