On the Szeged index of unicyclic graphs with given diameter

被引:5
|
作者
Liu, Yan [1 ]
Yu, Aimei [1 ]
Lu, Mei [2 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Szeged index; Wiener index; Unicyclic graph; Diameter; WIENER INDEX;
D O I
10.1016/j.dam.2017.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Szeged index of a connected graph G is defined as S-z(G) = Sigma(e=uv is an element of E(G)) n(u)(e|G)n(v)(e|G), where E(G) is the edge set of G, and for any e = uv is an element of E(G), n(u)(e|G) is the number of vertices of G lying closer to vertex u than to v, and n(v)(e|G) is the number of vertices of G lying closer to vertex v than to u. In this paper, we characterize the graph with minimum Szeged index among all the unicyclic graphs with given order and diameter. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 50 条
  • [1] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [2] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [3] On the edge-Szeged index of unicyclic graphs with given diameter
    Wang, Guangfu
    Li, Shuchao
    Qi, Dongchao
    Zhang, Huihui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 94 - 106
  • [4] The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index
    He, Shengjie
    Geng, Qiaozhi
    Hao, Rong-Xia
    AIMS MATHEMATICS, 2023, 8 (11): : 26301 - 26327
  • [5] On the Hosoya index of unicyclic graphs with a given diameter
    Li, Shuchao
    Zhu, Zhongxun
    ARS COMBINATORIA, 2014, 114 : 111 - 128
  • [6] Modified Sombor index of unicyclic graphs with a given diameter
    Shooshtari, H.
    Sheikholeslami, S. M.
    Amjadi, J.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [7] The Harary Index of All Unicyclic Graphs with Given Diameter
    Xing, Bao-Hua
    Yu, Gui-Dong
    Wang, Li-Xiang
    Cao, Jinde
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [8] THE MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN DIAMETER
    Zhong, Lingping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 429 - 442
  • [9] General Randic index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 7 - 16
  • [10] The smallest Hosoya index of unicyclic graphs with given diameter
    Xu, Kexiang
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (01) : 221 - 239