THE MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN DIAMETER

被引:7
|
作者
Zhong, Lingping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
harmonic index; unicyclic graphs; diameter; TOPOLOGICAL INDEXES; RANDIC-INDEX; FIXED DIAMETER; CONJECTURES; EIGENVALUE; NUMBER;
D O I
10.7151/dmgt.2007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The harmonic index of a graph G is defined as the sum of the weights 2/d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic index for unicyclic graphs with given diameter and characterize the corresponding extremal graphs. This answers an unsolved problem of Zhu and Chang [26]. Keywords: harmonic index, unicyclic graphs, diameter.
引用
收藏
页码:429 / 442
页数:14
相关论文
共 50 条
  • [1] On the Minimum Kirchhoff Index of Unicyclic Graphs with Given Girth and Diameter
    Feihong Yang
    Mei Lu
    Jia Guo
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1287 - 1299
  • [2] On the Minimum Kirchhoff Index of Unicyclic Graphs with Given Girth and Diameter
    Yang, Feihong
    Lu, Mei
    Guo, Jia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1287 - 1299
  • [3] The Minimum Harmonic Index for Bicyclic Graphs with Given Diameter
    Abdolghafourian, Adeleh
    Iranmanesh, Mohammad A.
    FILOMAT, 2022, 36 (01) : 125 - 140
  • [4] On Harmonic Index and Diameter of Unicyclic Graphs
    Jerline, J. Amalorpava
    Michaelraj, L. Benedict
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 115 - 122
  • [5] ON THE HARMONIC INDEX AND DIAMETER OF UNICYCLIC GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    MATHEMATICAL REPORTS, 2020, 22 (01): : 11 - 18
  • [6] On the Hosoya index of unicyclic graphs with a given diameter
    Li, Shuchao
    Zhu, Zhongxun
    ARS COMBINATORIA, 2014, 114 : 111 - 128
  • [7] On the Szeged index of unicyclic graphs with given diameter
    Liu, Yan
    Yu, Aimei
    Lu, Mei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 118 - 130
  • [8] The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index
    He, Shengjie
    Geng, Qiaozhi
    Hao, Rong-Xia
    AIMS MATHEMATICS, 2023, 8 (11): : 26301 - 26327
  • [9] The Harmonic Index for Unicyclic Graphs with Given Girth
    Zhong, Lingping
    Cui, Qing
    FILOMAT, 2015, 29 (04) : 673 - 686
  • [10] Minimum harmonic indices of trees and unicyclic graphs with given number of pendant vertices and diameter
    Zhu, Yan
    Chang, Renying
    UTILITAS MATHEMATICA, 2014, 93 : 365 - 374