On the edge-Szeged index of unicyclic graphs with given diameter

被引:7
|
作者
Wang, Guangfu [1 ]
Li, Shuchao [2 ]
Qi, Dongchao [2 ]
Zhang, Huihui [3 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
[3] Luoyang Normal Univ, Dept Math, Luoyang 471002, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Unicyclic graphs; Diameter; WIENER INDEX; TOPOLOGICAL INDEX; BIPARTITE GRAPHS; EXTREMAL CACTI; CONJECTURES; DISTANCE; RESPECT;
D O I
10.1016/j.amc.2018.04.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected graph G, the edge Szeged index Sz(e)(G) is defined as Sz(e)(G) = Sigma e-uv is an element of E m(u)(e)m(v)(e), where m(u)(e) and m(v)(e) are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u. In this paper, some extremal problems on the edge-Szeged index of unicyclic graphs are considered. All the n-vertex unicyclic graphs with a given diameter having the minimum edge-Szeged index are identified. Using a unified approach we identify the n-vertex unicyclic graphs with the minimum, second minimum, third minimum and fourth minimum edge-Szeged indices. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 50 条
  • [1] On the Edge-Szeged index of unicyclic graphs
    Li, Jianping
    ARS COMBINATORIA, 2021, 154 : 265 - 282
  • [2] On the edge-Szeged index of unicyclic graphs with perfect matchings
    He, Shengjie
    Hao, Rong-Xia
    Feng, Yan-Quan
    DISCRETE APPLIED MATHEMATICS, 2020, 284 (284) : 207 - 223
  • [3] On the Szeged index of unicyclic graphs with given diameter
    Liu, Yan
    Yu, Aimei
    Lu, Mei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 118 - 130
  • [4] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [5] The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index
    He, Shengjie
    Geng, Qiaozhi
    Hao, Rong-Xia
    AIMS MATHEMATICS, 2023, 8 (11): : 26301 - 26327
  • [6] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [7] On the minimum edge-Szeged index of fully-loaded unicyclic graphs
    Liu, Hechao
    Qiu, Zhengping
    Hong, Wenhao
    Tang, Zikai
    DISCRETE MATHEMATICS LETTERS, 2020, 4 : 37 - 41
  • [8] On the Revised Edge-Szeged Index of Graphs
    Liu, Hechao
    You, Lihua
    Tang, Zikai
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 10 (04): : 279 - 293
  • [9] Edge Szeged Index of Unicyclic Graphs
    Cai, Xiaochun
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 133 - 144
  • [10] Note on the graphs with the greatest edge-Szeged index
    Vukicevic, Damir
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (03) : 673 - 681