Computing topological indices of graphs is a fundamental and classical topic. Let G be a connected graph. The revised Szeged index S-z*(G) is defined as S-z*(G) = Sigma(e=uv)(is an element of E)((G))(n(u)(e vertical bar G) + n(0)(e vertical bar G)/2) (n(v) (e vertical bar G) + n(0) (e vertical bar G)/2), where n(u) (e vertical bar G) (respectively, n(v) (e vertical bar G) is the number of vertices whose distance to vertex u (respectively, v) is smaller than the distance to vertex v (respectively, u), and n(0)(e vertical bar G) is the number of vertices equidistant from both ends of e. In this paper, we determine the smallest revised Szeged index among all conjugated unicyclic graphs (i.e., unicyclic graphs with perfect matchings), and the corresponding extremal graphs are characterized.
机构:
Tongji Univ, Dept Math, Shanghai 200092, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
Du, Zhibin
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
Klavzar, Sandi
Nadjafi-Arani, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Golpayegan Univ Technol, Fac Math Sci, Golpayegan, IranUniv Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia