Convexity of Bertrand oligopoly TU-games with differentiated products

被引:1
|
作者
Aymeric Lardon
机构
[1] Université Côte d’Azur,CNRS, GREDEG
来源
关键词
Bertrand competition; Cooperation; Core; Convexity; C71; D43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Bertrand oligopoly TU-games with differentiated products. We assume that the demand system is Shubik’s and that firms operate at a constant and identical marginal and average cost. Our main results state that Bertrand oligopoly TU-games in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-characteristic function form satisfy the convexity property, meaning that there exist strong incentives for large-scale cooperation between firms on prices.
引用
收藏
页码:285 / 302
页数:17
相关论文
共 50 条
  • [41] Note On linear consistency of anonymous values for TU-games
    Elena Yanovskaya
    Theo Driessen
    International Journal of Game Theory, 2002, 30 : 601 - 609
  • [42] Moore interval subtraction and interval solutions for TU-games
    Gok, S. Zeynep Alparslan
    Brink, Rene van den
    Palanci, Osman
    ANNALS OF OPERATIONS RESEARCH, 2024, 343 (01) : 293 - 311
  • [43] TU-games with utilities: the prenucleolus and its characterization set
    Dornai, Zsofia
    Pinter, Miklos
    INTERNATIONAL JOURNAL OF GAME THEORY, 2024, 53 (03) : 1005 - 1032
  • [44] Generalizations of Sobolev's Consistency and Values for TU-Games
    Su, Jun
    Driessen, Theo S. H.
    Xu, Gen-Jiu
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2021, 9 (02) : 343 - 357
  • [45] Bargaining property of nucleolus and τ-value in a class of TU-games
    Namekata, T
    Driessen, TSH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (5-6) : 703 - 721
  • [46] Bertrand Pricing Games under Differentiated Products and Distinct Cost Condition
    Wang, Zhi-Gang
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND APPLICATIONS (ICMSA 2015), 2015, 3 : 771 - 776
  • [47] Bases and linear transforms of TU-games and cooperation systems
    Ulrich Faigle
    Michel Grabisch
    International Journal of Game Theory, 2016, 45 : 875 - 892
  • [48] Axiomatization and implementation of a class of solidarity values for TU-games
    Sylvain Béal
    Eric Rémila
    Philippe Solal
    Theory and Decision, 2017, 83 : 61 - 94
  • [49] Generalizations of Sobolev’s Consistency and Values for TU-Games
    Jun Su
    Theo S. H. Driessen
    Gen-Jiu Xu
    Journal of the Operations Research Society of China, 2021, 9 : 343 - 357
  • [50] Axiomatization and implementation of a class of solidarity values for TU-games
    Beal, Sylvain
    Remila, Eric
    Solal, Philippe
    THEORY AND DECISION, 2017, 83 (01) : 61 - 94