Convexity of Bertrand oligopoly TU-games with differentiated products

被引:1
|
作者
Aymeric Lardon
机构
[1] Université Côte d’Azur,CNRS, GREDEG
来源
关键词
Bertrand competition; Cooperation; Core; Convexity; C71; D43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Bertrand oligopoly TU-games with differentiated products. We assume that the demand system is Shubik’s and that firms operate at a constant and identical marginal and average cost. Our main results state that Bertrand oligopoly TU-games in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-characteristic function form satisfy the convexity property, meaning that there exist strong incentives for large-scale cooperation between firms on prices.
引用
收藏
页码:285 / 302
页数:17
相关论文
共 50 条
  • [31] Core extensions for non-balanced TU-games
    Bejan, Camelia
    Gomez, Juan Camilo
    INTERNATIONAL JOURNAL OF GAME THEORY, 2009, 38 (01) : 3 - 16
  • [32] Axiomatization of an allocation rule for ordered tree TU-games
    Beal, Sylvain
    Ferrieres, Sylvain
    Remila, Eric
    Solal, Philippe
    MATHEMATICAL SOCIAL SCIENCES, 2018, 93 : 132 - 140
  • [33] Shapley value for TU-games with multiple memberships and externalities
    Sokolov, Denis
    MATHEMATICAL SOCIAL SCIENCES, 2022, 119 : 76 - 90
  • [34] On a family of values for TU-games generalizing the Shapley value
    Radzik, Tadeusz
    Driessen, Theo
    MATHEMATICAL SOCIAL SCIENCES, 2013, 65 (02) : 105 - 111
  • [35] k-additive upper approximation of TU-games
    Grabisch, Michel
    Rusinowska, Agnieszka
    OPERATIONS RESEARCH LETTERS, 2020, 48 (04) : 487 - 492
  • [36] Consistency, population solidarity, and egalitarian solutions for TU-games
    René van den Brink
    Youngsub Chun
    Yukihiko Funaki
    Boram Park
    Theory and Decision, 2016, 81 : 427 - 447
  • [37] Bases and linear transforms of TU-games and cooperation systems
    Faigle, Ulrich
    Grabisch, Michel
    INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (04) : 875 - 892
  • [38] Consistency, population solidarity, and egalitarian solutions for TU-games
    van den Brink, Rene
    Chun, Youngsub
    Funaki, Yukihiko
    Park, Boram
    THEORY AND DECISION, 2016, 81 (03) : 427 - 447
  • [39] Some characterizations of egalitarian solutions on classes of TU-games
    Arin, J
    Kuipers, J
    Vermeulen, D
    MATHEMATICAL SOCIAL SCIENCES, 2003, 46 (03) : 327 - 345
  • [40] Core extensions for non-balanced TU-games
    Camelia Bejan
    Juan Camilo Gómez
    International Journal of Game Theory, 2009, 38