Convexity of Bertrand oligopoly TU-games with differentiated products

被引:1
|
作者
Aymeric Lardon
机构
[1] Université Côte d’Azur,CNRS, GREDEG
来源
关键词
Bertrand competition; Cooperation; Core; Convexity; C71; D43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Bertrand oligopoly TU-games with differentiated products. We assume that the demand system is Shubik’s and that firms operate at a constant and identical marginal and average cost. Our main results state that Bertrand oligopoly TU-games in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-characteristic function form satisfy the convexity property, meaning that there exist strong incentives for large-scale cooperation between firms on prices.
引用
收藏
页码:285 / 302
页数:17
相关论文
共 50 条
  • [21] Nonlinear selfdual solutions for TU-games
    Sudholter, P
    GAME THEORETICAL APPLICATIONS TO ECONOMICS AND OPERATIONS RESEARCH, 1997, 18 : 33 - 50
  • [22] The B-nucleolus of TU-games
    Reijnierse, H
    Potters, J
    GAMES AND ECONOMIC BEHAVIOR, 1998, 24 (1-2) : 77 - 96
  • [23] On proper Shapley values for monotone TU-games
    van den Brink, Rene
    Levinsky, Rene
    Zeleny, Miroslav
    INTERNATIONAL JOURNAL OF GAME THEORY, 2015, 44 (02) : 449 - 471
  • [24] Linear, efficient and symmetric values for TU-games
    Nembua, Celestin Chameni
    Andjiga, Nicolas Gabriel
    ECONOMICS BULLETIN, 2008, 3
  • [25] Sequentially compatible payoffs and the core in TU-games
    Izquierdo, JM
    Llerena, F
    Rafels, C
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (03) : 318 - 330
  • [26] Consistency, converse consistency, and aspirations in TU-games
    Hokari, T
    Kibris, Ö
    MATHEMATICAL SOCIAL SCIENCES, 2003, 45 (03) : 313 - 331
  • [27] On linear consistency of anonymous values for TU-games
    Yanovskaya, E
    Driessen, T
    INTERNATIONAL JOURNAL OF GAME THEORY, 2002, 30 (04) : 601 - 609
  • [28] An optimal bound to access the core in TU-games
    Beal, Sylvain
    Remila, Eric
    Solal, Philippe
    GAMES AND ECONOMIC BEHAVIOR, 2013, 80 : 1 - 9
  • [29] Consistency implies equal treatment in TU-games
    Hokari, T
    GAMES AND ECONOMIC BEHAVIOR, 2005, 51 (01) : 63 - 82
  • [30] On proper Shapley values for monotone TU-games
    René van den Brink
    René Levínský
    Miroslav Zelený
    International Journal of Game Theory, 2015, 44 : 449 - 471