Bases and linear transforms of TU-games and cooperation systems

被引:0
|
作者
Ulrich Faigle
Michel Grabisch
机构
[1] Universität zu Köln,Mathematisches Institut
[2] University of Paris I,Paris School of Economics
来源
关键词
Cooperation system; Cooperative game; Basis; Fourier analysis; Inverse problem; Potential; Transform; C71;
D O I
暂无
中图分类号
学科分类号
摘要
We study linear properties of TU-games, revisiting well-known issues like interaction transforms, the inverse Shapley value problem and potentials. We embed TU-games into the model of cooperation systems and influence patterns, which allows us to introduce linear operators on games in a natural way. We focus on transforms, which are linear invertible maps, relate them to bases and investigate many examples (Möbius transform, interaction transform, Walsh transform and Fourier analysis etc.). In particular, we present a simple solution to the inverse problem in its general form: Given a linear value Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi }$$\end{document} and a game v, find all games v′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v'$$\end{document} such that Φ(v)=Φ(v′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi (v)=\Phi (v')}$$\end{document}. Generalizing Hart and Mas-Colell’s concept of a potential, we introduce general potentials and show that every linear value is induced by an appropriate potential.
引用
收藏
页码:875 / 892
页数:17
相关论文
共 50 条
  • [1] Bases and linear transforms of TU-games and cooperation systems
    Faigle, Ulrich
    Grabisch, Michel
    INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (04) : 875 - 892
  • [2] Linear symmetric rankings for TU-games
    Hernandez-Lamoneda, L.
    Sanchez-Sanchez, F.
    THEORY AND DECISION, 2017, 82 (04) : 461 - 484
  • [3] Linear symmetric rankings for TU-games
    L. Hernández-Lamoneda
    F. Sánchez-Sánchez
    Theory and Decision, 2017, 82 : 461 - 484
  • [4] Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation
    Nembua, C. Chameni
    GAMES AND ECONOMIC BEHAVIOR, 2012, 74 (01) : 431 - 433
  • [5] Linear, efficient and symmetric values for TU-games
    Nembua, Celestin Chameni
    Andjiga, Nicolas Gabriel
    ECONOMICS BULLETIN, 2008, 3
  • [6] On linear consistency of anonymous values for TU-games
    Yanovskaya, E
    Driessen, T
    INTERNATIONAL JOURNAL OF GAME THEORY, 2002, 30 (04) : 601 - 609
  • [7] Note On linear consistency of anonymous values for TU-games
    Elena Yanovskaya
    Theo Driessen
    International Journal of Game Theory, 2002, 30 : 601 - 609
  • [8] Axioms of invariance for TU-games
    Sylvain Béal
    Eric Rémila
    Philippe Solal
    International Journal of Game Theory, 2015, 44 : 891 - 902
  • [9] Axioms of invariance for TU-games
    Beal, Sylvain
    Remila, Eric
    Solal, Philippe
    INTERNATIONAL JOURNAL OF GAME THEORY, 2015, 44 (04) : 891 - 902
  • [10] Prosperity properties of TU-games
    J. R. G. van Gellekom
    J. A. M. Potters
    J. H. Reijnierse
    International Journal of Game Theory, 1999, 28 : 211 - 227