Bases and linear transforms of TU-games and cooperation systems

被引:0
|
作者
Ulrich Faigle
Michel Grabisch
机构
[1] Universität zu Köln,Mathematisches Institut
[2] University of Paris I,Paris School of Economics
来源
关键词
Cooperation system; Cooperative game; Basis; Fourier analysis; Inverse problem; Potential; Transform; C71;
D O I
暂无
中图分类号
学科分类号
摘要
We study linear properties of TU-games, revisiting well-known issues like interaction transforms, the inverse Shapley value problem and potentials. We embed TU-games into the model of cooperation systems and influence patterns, which allows us to introduce linear operators on games in a natural way. We focus on transforms, which are linear invertible maps, relate them to bases and investigate many examples (Möbius transform, interaction transform, Walsh transform and Fourier analysis etc.). In particular, we present a simple solution to the inverse problem in its general form: Given a linear value Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi }$$\end{document} and a game v, find all games v′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v'$$\end{document} such that Φ(v)=Φ(v′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi (v)=\Phi (v')}$$\end{document}. Generalizing Hart and Mas-Colell’s concept of a potential, we introduce general potentials and show that every linear value is induced by an appropriate potential.
引用
收藏
页码:875 / 892
页数:17
相关论文
共 50 条
  • [21] Nonlinear selfdual solutions for TU-games
    Sudholter, P
    GAME THEORETICAL APPLICATIONS TO ECONOMICS AND OPERATIONS RESEARCH, 1997, 18 : 33 - 50
  • [22] The B-nucleolus of TU-games
    Reijnierse, H
    Potters, J
    GAMES AND ECONOMIC BEHAVIOR, 1998, 24 (1-2) : 77 - 96
  • [23] On proper Shapley values for monotone TU-games
    van den Brink, Rene
    Levinsky, Rene
    Zeleny, Miroslav
    INTERNATIONAL JOURNAL OF GAME THEORY, 2015, 44 (02) : 449 - 471
  • [24] Sequentially compatible payoffs and the core in TU-games
    Izquierdo, JM
    Llerena, F
    Rafels, C
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (03) : 318 - 330
  • [25] Consistency, converse consistency, and aspirations in TU-games
    Hokari, T
    Kibris, Ö
    MATHEMATICAL SOCIAL SCIENCES, 2003, 45 (03) : 313 - 331
  • [26] An optimal bound to access the core in TU-games
    Beal, Sylvain
    Remila, Eric
    Solal, Philippe
    GAMES AND ECONOMIC BEHAVIOR, 2013, 80 : 1 - 9
  • [27] Consistency implies equal treatment in TU-games
    Hokari, T
    GAMES AND ECONOMIC BEHAVIOR, 2005, 51 (01) : 63 - 82
  • [28] On proper Shapley values for monotone TU-games
    René van den Brink
    René Levínský
    Miroslav Zelený
    International Journal of Game Theory, 2015, 44 : 449 - 471
  • [29] Core extensions for non-balanced TU-games
    Bejan, Camelia
    Gomez, Juan Camilo
    INTERNATIONAL JOURNAL OF GAME THEORY, 2009, 38 (01) : 3 - 16
  • [30] Axiomatization of an allocation rule for ordered tree TU-games
    Beal, Sylvain
    Ferrieres, Sylvain
    Remila, Eric
    Solal, Philippe
    MATHEMATICAL SOCIAL SCIENCES, 2018, 93 : 132 - 140