Bases and linear transforms of TU-games and cooperation systems

被引:0
|
作者
Ulrich Faigle
Michel Grabisch
机构
[1] Universität zu Köln,Mathematisches Institut
[2] University of Paris I,Paris School of Economics
来源
关键词
Cooperation system; Cooperative game; Basis; Fourier analysis; Inverse problem; Potential; Transform; C71;
D O I
暂无
中图分类号
学科分类号
摘要
We study linear properties of TU-games, revisiting well-known issues like interaction transforms, the inverse Shapley value problem and potentials. We embed TU-games into the model of cooperation systems and influence patterns, which allows us to introduce linear operators on games in a natural way. We focus on transforms, which are linear invertible maps, relate them to bases and investigate many examples (Möbius transform, interaction transform, Walsh transform and Fourier analysis etc.). In particular, we present a simple solution to the inverse problem in its general form: Given a linear value Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi }$$\end{document} and a game v, find all games v′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v'$$\end{document} such that Φ(v)=Φ(v′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi (v)=\Phi (v')}$$\end{document}. Generalizing Hart and Mas-Colell’s concept of a potential, we introduce general potentials and show that every linear value is induced by an appropriate potential.
引用
收藏
页码:875 / 892
页数:17
相关论文
共 50 条