We consider Bertrand oligopoly TU-games with differentiated products. We assume that the demand system is Shubik’s and that firms operate at a constant and identical marginal and average cost. Our main results state that Bertrand oligopoly TU-games in α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} and γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma $$\end{document}-characteristic function form satisfy the convexity property, meaning that there exist strong incentives for large-scale cooperation between firms on prices.
机构:
Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R ChinaNorthwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
Hou, Dongshuang
Lardon, Aymeric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jean Monnet, GATE Lyon St Etienne, UMR 5824, CNRS, St Etienne, FranceNorthwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
Lardon, Aymeric
Driessen, Theo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Twente, Fac Elect Engn Math & Comp Sci, Dept Appl Math, POB 217, NL-7500 AE Enschede, NetherlandsNorthwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
机构:
Univ St Etienne, CNRS UMR GATE Lyon St Etienne 5824, St Etienne, France
IXXI, St Etienne, FranceUniv Franche Comte, CRESE, F-25009 Besancon, France
Remila, Eric
Solal, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ St Etienne, CNRS UMR GATE Lyon St Etienne 5824, St Etienne, FranceUniv Franche Comte, CRESE, F-25009 Besancon, France