On a conformal Schwarzschild-de Sitter spacetime

被引:0
|
作者
Hristu Culetu
机构
[1] Ovidius University,Dept. of Physics and Electronics
来源
关键词
Nonstatic metric; Proper acceleration; C-metric; Rindler geometry; Timelike geodesics; Extremal version;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of the C-metric, we investigate the conformal Schwarzschild - deSitter spacetime and compute the source stress tensor and study its properties, including the energy conditions. Then we analyze its extremal version (b2=27m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2} = 27m^{2}$$\end{document}, where b is the deS radius and m is the source mass), when the metric is nonstatic. The weak-field version is investigated in several frames, and the metric becomes flat with the special choice b=1/a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 1/a$$\end{document}, a being the constant acceleration of the Schwarzschild-like mass or black hole. This form is Rindler’s geometry in disguise and is also conformal to a de Sitter metric where the acceleration plays the role of the Hubble constant. In its time dependent version, one finds that the proper acceleration of a static observer is constant everywhere, in contrast with the standard Rindler case. The timelike geodesics along the z-direction are calculated and proves to be hyperbolae.
引用
收藏
相关论文
共 50 条
  • [21] Hierarchical relationship of nonlocal correlations in Schwarzschild-de Sitter spacetime
    Yao, Huimin
    Zhang, Li
    Wen, Cuihong
    Wang, Jieci
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (01):
  • [22] Isofrequency pairing of spinning particles in Schwarzschild-de Sitter spacetime
    Kunst, Daniela
    Perlick, Volker
    Laemmerzahl, Claus
    PHYSICAL REVIEW D, 2015, 92 (02):
  • [23] Painleve-Gullstrand coordinates for Schwarzschild-de Sitter spacetime
    Volovik, G. E.
    ANNALS OF PHYSICS, 2023, 449
  • [24] Numerical solution of the Dirac equation in Schwarzschild-de Sitter spacetime
    Lyu, Y.
    Gui, Y. X.
    PHYSICA SCRIPTA, 2007, 75 (02) : 152 - 156
  • [25] Gravitational deflection of massive particles in Schwarzschild-de Sitter spacetime
    He, Guansheng
    Zhou, Xia
    Feng, Zhongwen
    Mu, Xueling
    Wang, Hui
    Li, Weijun
    Pan, Chaohong
    Lin, Wenbin
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [26] Static sphere observers and geodesics in Schwarzschild-de Sitter spacetime
    Faruk, Mir Mehedi
    Morvan, Edward
    van der Schaar, Jan Pieter
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [27] Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation
    Pappas, Thomas
    Kanti, Panagiota
    PHYSICS LETTERS B, 2017, 775 : 140 - 146
  • [28] Electromagnetic waves with negative phase velocity in Schwarzschild-de Sitter spacetime
    Mackay, TG
    Lakhtakia, A
    Setiawan, S
    EUROPHYSICS LETTERS, 2005, 71 (06): : 925 - 931
  • [29] Schwarzschild-de Sitter cosmology
    Epstein, Kenneth J.
    PHYSICS ESSAYS, 2009, 22 (04) : 432 - 434
  • [30] Gravitational Light Bending in Weyl Gravity and Schwarzschild-de Sitter Spacetime
    Sultana, Joseph
    SYMMETRY-BASEL, 2024, 16 (01):