On a conformal Schwarzschild-de Sitter spacetime

被引:0
|
作者
Hristu Culetu
机构
[1] Ovidius University,Dept. of Physics and Electronics
来源
关键词
Nonstatic metric; Proper acceleration; C-metric; Rindler geometry; Timelike geodesics; Extremal version;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of the C-metric, we investigate the conformal Schwarzschild - deSitter spacetime and compute the source stress tensor and study its properties, including the energy conditions. Then we analyze its extremal version (b2=27m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2} = 27m^{2}$$\end{document}, where b is the deS radius and m is the source mass), when the metric is nonstatic. The weak-field version is investigated in several frames, and the metric becomes flat with the special choice b=1/a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 1/a$$\end{document}, a being the constant acceleration of the Schwarzschild-like mass or black hole. This form is Rindler’s geometry in disguise and is also conformal to a de Sitter metric where the acceleration plays the role of the Hubble constant. In its time dependent version, one finds that the proper acceleration of a static observer is constant everywhere, in contrast with the standard Rindler case. The timelike geodesics along the z-direction are calculated and proves to be hyperbolae.
引用
收藏
相关论文
共 50 条
  • [31] No practical lensing by Lambda: Deflection of light in the Schwarzschild-de Sitter spacetime
    Butcher, Luke M.
    [J]. PHYSICAL REVIEW D, 2016, 94 (08)
  • [32] Uniqueness of de Sitter and Schwarzschild-de Sitter spacetimes
    Masood-ul-Alam, A. K. M.
    Yu, Wenhua
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (02) : 377 - 387
  • [33] Semi-analytical solution of Dirac equation in Schwarzschild-de Sitter spacetime
    Lyu, Y.
    Gui, Y.-X.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (06) : 1596 - 1616
  • [34] Scalar field as a Bose-Einstein condensate in a Schwarzschild-de Sitter spacetime
    Castellanos, Elias
    Escamilla-Rivera, Celia
    Laemmerzahl, Claus
    Macias, Alfredo
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (04):
  • [35] On the non-linear stability of the Cosmological region of the Schwarzschild-de Sitter spacetime
    Minucci, Marica
    Valiente Kroon, Juan A.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (14)
  • [36] Horizons and correlation functions in 2D Schwarzschild-de Sitter spacetime
    Paul R. Anderson
    Jennie Traschen
    [J]. Journal of High Energy Physics, 2022
  • [37] Greybody factors for nonminimally coupled scalar fields in Schwarzschild-de Sitter spacetime
    Crispino, Luis C. B.
    Higuchi, Atsushi
    Oliveira, Ednilton S.
    Rocha, Jorge V.
    [J]. PHYSICAL REVIEW D, 2013, 87 (10)
  • [38] Newtonian analogue of Schwarzschild-de Sitter spacetime: Influence on the local kinematics in galaxies
    Sarkar, Tamal
    Ghosh, Shubhrangshu
    Bhadra, Arunava
    [J]. PHYSICAL REVIEW D, 2014, 90 (06)
  • [39] Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime
    Garattini, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (04) : 571 - 592
  • [40] Classical tests of general relativity in the Newtonian limit of the Schwarzschild-de Sitter spacetime
    Miraghaei, H.
    Nouri-Zonoz, M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (12) : 2947 - 2956