On a conformal Schwarzschild-de Sitter spacetime

被引:0
|
作者
Hristu Culetu
机构
[1] Ovidius University,Dept. of Physics and Electronics
来源
关键词
Nonstatic metric; Proper acceleration; C-metric; Rindler geometry; Timelike geodesics; Extremal version;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of the C-metric, we investigate the conformal Schwarzschild - deSitter spacetime and compute the source stress tensor and study its properties, including the energy conditions. Then we analyze its extremal version (b2=27m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2} = 27m^{2}$$\end{document}, where b is the deS radius and m is the source mass), when the metric is nonstatic. The weak-field version is investigated in several frames, and the metric becomes flat with the special choice b=1/a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 1/a$$\end{document}, a being the constant acceleration of the Schwarzschild-like mass or black hole. This form is Rindler’s geometry in disguise and is also conformal to a de Sitter metric where the acceleration plays the role of the Hubble constant. In its time dependent version, one finds that the proper acceleration of a static observer is constant everywhere, in contrast with the standard Rindler case. The timelike geodesics along the z-direction are calculated and proves to be hyperbolae.
引用
收藏
相关论文
共 50 条
  • [41] Horizons and correlation functions in 2D Schwarzschild-de Sitter spacetime
    Anderson, Paul R.
    Traschen, Jennie
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [42] Semi-Analytical Solution of Dirac Equation in Schwarzschild-de Sitter Spacetime
    Y. Lyu
    Y.-X. Gui
    International Journal of Theoretical Physics, 2007, 46 : 1596 - 1616
  • [43] Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime
    Garattini, R
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (04) : 571 - 592
  • [44] AN INTERNAL SCHWARZSCHILD-DE SITTER SOLUTION?
    Nazari, Borzoo
    QUANTUM MECHANICS, ELEMENTARY PARTICLES, QUANTUM COSMOLOGY AND COMPLEXITY, 2011, : 591 - 596
  • [45] On the Schwarzschild-de Sitter metric of nonlocal de Sitter gravity
    Dimitrijevic, Ivan
    Dragovich, Branko
    Rakic, Zoran
    Stankovic, Jelena
    FILOMAT, 2023, 37 (25) : 8641 - 8650
  • [46] Quantum deformations of Schwarzschild and Schwarzschild-de Sitter spacetimes
    Wang, Ding
    Zhang, R. B.
    Zhang, Xiao
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (08)
  • [47] Quasinormal modes in Schwarzschild-de Sitter spacetime: A simple derivation of the level spacing of the frequencies
    Choudhury, TR
    Padmanabhan, T
    PHYSICAL REVIEW D, 2004, 69 (06): : 9
  • [48] Light bending, static dark energy, and related uniqueness of Schwarzschild-de Sitter spacetime
    Ali, Md Sabir
    Bhattacharya, Sourav
    PHYSICAL REVIEW D, 2018, 97 (02)
  • [49] GRAVITATIONAL PERTURBATION OF SCHWARZSCHILD-DE SITTER SPACETIME AND ITS QUASI-NORMAL MODES
    OTSUKI, H
    FUTAMASE, T
    PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (04): : 771 - 778
  • [50] Genuine N-partite entanglement in Schwarzschild-de Sitter black hole spacetime
    Wu, Shu-Min
    Teng, Xiao-Wei
    Huang, Xiao-Li
    Lu, Jianbo
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (11):