Static sphere observers and geodesics in Schwarzschild-de Sitter spacetime

被引:1
|
作者
Faruk, Mir Mehedi [1 ,2 ,3 ]
Morvan, Edward [2 ,3 ]
van der Schaar, Jan Pieter [2 ,3 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Amsterdam, Inst Phys, Sci Pk 904,POB 94485, NL-1090 GL Amsterdam, Netherlands
[3] Delta Inst Theoret Phys, Sci Pk 904,POB 94485, NL-1090 GL Amsterdam, Netherlands
基金
加拿大自然科学与工程研究理事会;
关键词
GR black holes; gravity; Quantum fields in curved spacetimes;
D O I
10.1088/1475-7516/2024/05/118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze null- and spacelike radial geodesics in Schwarzschild-de Sitter spacetime connecting two conjugate static sphere observers, i.e. free -falling observers at a fixed radius in between the two horizons. We explicitly determine the changes in the causal structure with respect to these natural observers as a result of the inward bending of the black hole singularity, as well as the outward bending of asymptotic infinity. Notably, the inward and outward bending changes as a function of the black hole mass, first increasing towards a maximum and then decreasing to vanish in the extreme Nariai limit. For a generic mass of the black hole this implies the existence of finite size (temporal) windows for the presence of symmetric radial geodesics between the static sphere observers probing the interior region of the black hole, as well as the exterior de Sitter region. We determine the size of the interior (black hole) and exterior (de Sitter) temporal windows in 4, 5 and 6 spacetime dimensions, finding that they are equal in D = 5, and compute the proper lengths of the symmetric radial geodesics. We comment on the implications for information exchange and the potential role of the symmetric radial geodesics in a geodesic approximation of static sphere correlators in Schwarzschild-de Sitter spacetime.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] On a conformal Schwarzschild-de Sitter spacetime
    Hristu Culetu
    [J]. General Relativity and Gravitation, 2021, 53
  • [2] On the Uniqueness of Schwarzschild-de Sitter Spacetime
    Borghini, Stefano
    Chrusciel, Piotr T. T.
    Mazzieri, Lorenzo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
  • [3] Energy in the Schwarzschild-de Sitter spacetime
    Salti, M
    Aydogdu, O
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 2006, 19 (03) : 269 - 276
  • [5] Hadamard state in Schwarzschild-de Sitter spacetime
    Brum, Marcos
    Joras, Sergio E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (01)
  • [6] Phase transition in Schwarzschild-de Sitter spacetime
    D. Momeni
    A. Azadi
    [J]. Astrophysics and Space Science, 2008, 317 : 231 - 234
  • [7] Radiative falloff in Schwarzschild-de Sitter spacetime
    Brady, PR
    Chambers, CM
    Laarakkers, WG
    Poisson, E
    [J]. PHYSICAL REVIEW D, 1999, 60 (06):
  • [8] On the Global Temperature of the Schwarzschild-de Sitter Spacetime
    Volovik, G. E.
    [J]. JETP LETTERS, 2023, 118 (01) : 8 - 13
  • [9] Phase transition in Schwarzschild-de Sitter spacetime
    Momeni, D.
    Azadi, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2008, 317 (3-4) : 231 - 234
  • [10] Synchrotron geodesic radiation in Schwarzschild-de Sitter spacetime
    Brito, Joao P. B.
    Bernar, Rafael P.
    Crispino, Luis C. B.
    [J]. PHYSICAL REVIEW D, 2020, 101 (12)