On a conformal Schwarzschild-de Sitter spacetime

被引:0
|
作者
Hristu Culetu
机构
[1] Ovidius University,Dept. of Physics and Electronics
来源
关键词
Nonstatic metric; Proper acceleration; C-metric; Rindler geometry; Timelike geodesics; Extremal version;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of the C-metric, we investigate the conformal Schwarzschild - deSitter spacetime and compute the source stress tensor and study its properties, including the energy conditions. Then we analyze its extremal version (b2=27m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2} = 27m^{2}$$\end{document}, where b is the deS radius and m is the source mass), when the metric is nonstatic. The weak-field version is investigated in several frames, and the metric becomes flat with the special choice b=1/a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 1/a$$\end{document}, a being the constant acceleration of the Schwarzschild-like mass or black hole. This form is Rindler’s geometry in disguise and is also conformal to a de Sitter metric where the acceleration plays the role of the Hubble constant. In its time dependent version, one finds that the proper acceleration of a static observer is constant everywhere, in contrast with the standard Rindler case. The timelike geodesics along the z-direction are calculated and proves to be hyperbolae.
引用
收藏
相关论文
共 50 条
  • [1] On a conformal Schwarzschild-de Sitter spacetime
    Culetu, Hristu
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [2] Hidden conformal symmetry and entropy of Schwarzschild-de Sitter spacetime
    Guerrero-Dominguez, D.
    Talavera, P.
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [3] On the Uniqueness of Schwarzschild-de Sitter Spacetime
    Borghini, Stefano
    Chrusciel, Piotr T. T.
    Mazzieri, Lorenzo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
  • [4] Energy in the Schwarzschild-de Sitter spacetime
    Salti, M
    Aydogdu, O
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 2006, 19 (03) : 269 - 276
  • [5] Exact gravitational lensing in conformal gravity and Schwarzschild-de Sitter spacetime
    Lim, Yen-Kheng
    Wang, Qing-hai
    [J]. PHYSICAL REVIEW D, 2017, 95 (02)
  • [6] Hadamard state in Schwarzschild-de Sitter spacetime
    Brum, Marcos
    Joras, Sergio E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (01)
  • [7] Phase transition in Schwarzschild-de Sitter spacetime
    D. Momeni
    A. Azadi
    [J]. Astrophysics and Space Science, 2008, 317 : 231 - 234
  • [8] On the Global Temperature of the Schwarzschild-de Sitter Spacetime
    Volovik, G. E.
    [J]. JETP LETTERS, 2023, 118 (01) : 8 - 13
  • [9] Radiative falloff in Schwarzschild-de Sitter spacetime
    Brady, PR
    Chambers, CM
    Laarakkers, WG
    Poisson, E
    [J]. PHYSICAL REVIEW D, 1999, 60 (06):
  • [10] Phase transition in Schwarzschild-de Sitter spacetime
    Momeni, D.
    Azadi, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2008, 317 (3-4) : 231 - 234