Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds

被引:0
|
作者
Zhiqin Lu
Qi S. Zhang
Meng Zhu
机构
[1] University of California,Department of Mathematics
[2] University of California,Department of Mathematics
[3] East China Normal University,School of Mathematical Sciences and Shanghai Key Laboratory of PMMP
来源
关键词
Eigenvalue; Gradient estimates; Kahler manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on (m, 0) forms, i.e., sections of the canonical bundle of Kähler manifolds, where m is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of (m, 0) forms, which involves only the Ricci curvature and the gradient of the scalar curvature.
引用
收藏
页码:10304 / 10335
页数:31
相关论文
共 50 条
  • [31] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [32] Totally geodesic immersions of Kähler manifolds and Kähler Frenet curves
    Sadahiro Maeda
    Hiromasa Tanabe
    Mathematische Zeitschrift, 2006, 252 : 787 - 795
  • [33] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [34] Core sets in K?hler manifolds
    Gogus, Nihat Gokhan
    Gunyuz, Ozan
    Yazici, Ozcan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [35] Hyper-Kähler Manifolds
    Olivier Debarre
    Milan Journal of Mathematics, 2022, 90 : 305 - 387
  • [36] Hypercomplex structures on Kähler manifolds
    M. Verbitsky
    Geometric & Functional Analysis GAFA, 2005, 15 : 1275 - 1283
  • [37] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [38] A note on special Kähler manifolds
    Zhiqin Lu
    Mathematische Annalen, 1999, 313 : 711 - 713
  • [39] Hamiltonian mechanics on Kähler manifolds
    Rong-ye Zhang
    Applied Mathematics and Mechanics, 2006, 27 : 353 - 362
  • [40] Trees and tensors on Kähler manifolds
    Hao Xu
    Shing-Tung Yau
    Annals of Global Analysis and Geometry, 2013, 44 : 151 - 168