Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds

被引:0
|
作者
Zhiqin Lu
Qi S. Zhang
Meng Zhu
机构
[1] University of California,Department of Mathematics
[2] University of California,Department of Mathematics
[3] East China Normal University,School of Mathematical Sciences and Shanghai Key Laboratory of PMMP
来源
关键词
Eigenvalue; Gradient estimates; Kahler manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on (m, 0) forms, i.e., sections of the canonical bundle of Kähler manifolds, where m is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of (m, 0) forms, which involves only the Ricci curvature and the gradient of the scalar curvature.
引用
收藏
页码:10304 / 10335
页数:31
相关论文
共 50 条
  • [21] A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold
    Henri Anciaux
    Pascal Romon
    Monatshefte für Mathematik, 2014, 174 : 329 - 355
  • [22] Compact Kähler three-folds with nef anti-canonical bundle
    Matsumura, Shin-ichi
    Wu, Xiaojun
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 1253 - 1289
  • [23] Quasi-plurisubharmonic envelopes 1: uniform estimates on Kähler manifolds
    Guedj, Vincent
    Lu, Chinh H.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (03) : 1185 - 1208
  • [24] Extension of Holomorphic Canonical Forms on Complete d-Bounded Kähler Manifolds
    Huang, Chunle
    FRONTIERS OF MATHEMATICS, 2025,
  • [25] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [26] Eigenvalue Estimates on Weighted Manifolds
    Branding, Volker
    Habib, Georges
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [27] EIGENVALUE ESTIMATES ON WEIGHTED MANIFOLDS
    Branding, Volker
    Habib, Georges
    arXiv, 2022,
  • [28] EIGENVALUE ESTIMATES ON HOMOGENEOUS MANIFOLDS
    LI, P
    COMMENTARII MATHEMATICI HELVETICI, 1980, 55 (03) : 347 - 363
  • [29] Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds
    Huai-Dong Cao
    Lei Ni
    Mathematische Annalen, 2005, 331 : 795 - 807
  • [30] ON CANONICAL RADIAL KÄHLER METRICS
    Loi, Andrea
    Salis, Filippo
    Zuddas, Fabio
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (03) : 545 - 554