Upper bounds on the number of limit cycles in generalized Liénard equations of odd type

被引:0
|
作者
G. A. Kolyutsky
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
来源
Doklady Mathematics | 2010年 / 81卷
关键词
Vector Field; Phase Portrait; DOKLADY Mathematic; Quadratic Domain; Global Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:176 / 179
页数:3
相关论文
共 50 条
  • [21] UPPER BOUNDS FOR THE NUMBER OF LIMIT CYCLES OF POLYNOMIAL DIFFERENTIAL SYSTEMS
    Ellaggoune, Selma
    Badi, Sabrina
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [22] Lower bounds for the number of limit cycles of trigonometric Abel equations
    Alvarez, M. J.
    Gasull, A.
    Yu, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 682 - 693
  • [23] Reduction of Kinetic Equations to Liénard–Levinson–Smith Form: Counting Limit Cycles
    Saha S.
    Gangopadhyay G.
    Ray D.S.
    International Journal of Applied and Computational Mathematics, 2019, 5 (2)
  • [24] Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations
    Jaume Llibre
    Marco Antonio Teixeira
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 51 - 66
  • [25] Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations
    Llibre, Jaume
    Teixeira, Marco Antonio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 51 - 66
  • [26] MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED LIENARD DIFFERENTIAL EQUATIONS
    Badi, Sabrina
    Makhlouf, Amar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [27] Upper bounds of limit cycles in Abel differential equations with invariant curves
    Bravo, J. L.
    Calderon, L. A.
    Fernandez, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [28] An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center
    Ricardo Miranda Martins
    Ana Cristina Mereu
    Regilene D. S. Oliveira
    Nonlinear Dynamics, 2015, 79 : 185 - 194
  • [29] Bounding the number of limit cycles for parametric Li?nard systems using symbolic computation methods
    Hu, Yifan
    Niu, Wei
    Huang, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [30] Existence of limit cycles for Liénard-type systems with p-Laplacian
    Jitsuro Sugie
    Ai Kono
    Aya Yamaguchi
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 91 - 110