An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center

被引:0
|
作者
Ricardo Miranda Martins
Ana Cristina Mereu
Regilene D. S. Oliveira
机构
[1] Unicamp,Department of Mathematics, IMECC
[2] UFSCar,Department of Physics, Chemistry and Mathematics
[3] USP,Department of Mathematics, ICMC
来源
Nonlinear Dynamics | 2015年 / 79卷
关键词
Bifurcation of limit cycles; Averaging theory; Isochronous center; Quadratic systems; 34C14; 34C20; 37J15; 37J40;
D O I
暂无
中图分类号
学科分类号
摘要
The number of limit cycles which bifurcates from periodic orbits of a differential system with a center has been extensively studied recently using many distinct tools. This problem was proposed by Hilbert in 1900, and it is a difficult problem, so only particular families of such systems were considered. In this paper, we study the maximum number of limit cycles that can bifurcate from an integrable nonlinear quadratic isochronous center, when perturbed inside a class of Liénard-like polynomial differential systems of arbitrary degree n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. We apply the averaging theory of first order to this class of Liénard-like polynomial differential systems, and we estimate that the number of limit cycles is 2[(n-2)/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2[(n-2)/2]$$\end{document}, where [.]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[.]$$\end{document} denotes the integer part function.
引用
收藏
页码:185 / 194
页数:9
相关论文
共 50 条
  • [1] An estimation for the number of limit cycles in a Lienard-like perturbation of a quadratic nonlinear center
    Martins, Ricardo Miranda
    Mereu, Ana Cristina
    Oliveira, Regilene D. S.
    NONLINEAR DYNAMICS, 2015, 79 (01) : 185 - 194
  • [2] On the Number of Hyperelliptic Limit Cycles of Liénard Systems
    Xinjie Qian
    Jiazhong Yang
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [3] Limit Cycles for a Perturbation of a Quadratic Center with Symmetry
    Cherkas, L. A.
    DIFFERENTIAL EQUATIONS, 2011, 47 (08) : 1077 - 1087
  • [4] Limit cycles for a perturbation of a quadratic center with symmetry
    L. A. Cherkas
    Differential Equations, 2011, 47 : 1077 - 1087
  • [5] Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations
    de Abreu, Tiago M. P.
    Martins, Ricardo M.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [6] On the number of limit cycles of a class of Li?nard-Rayleigh oscillators
    Yuan, Zhen
    Ke, Ai
    Han, Maoan
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 438
  • [7] ON THE NUMBER OF LIMIT CYCLES IN PERTURBATIONS OF A QUADRATIC REVERSIBLE CENTER
    Wu, Juanjuan
    Peng, Linping
    Li, Cuiping
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 92 (03) : 409 - 423
  • [8] The Number of Limit Cycles Bifurcating from a Quadratic Reversible Center
    Liang, Feng
    Liu, Yeqing
    Chen, Chong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13):
  • [9] Upper bounds on the number of limit cycles in generalized Li,nard equations of odd type
    Kolyutsky, G. A.
    DOKLADY MATHEMATICS, 2010, 81 (02) : 176 - 179
  • [10] Upper bounds on the number of limit cycles in generalized Liénard equations of odd type
    G. A. Kolyutsky
    Doklady Mathematics, 2010, 81 : 176 - 179