Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations

被引:0
|
作者
de Abreu, Tiago M. P. [1 ]
Martins, Ricardo M. [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Rua Sergio Buarque Holanda 651,Cidade Univ Zeferin, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth differential equations; Averaging theory; Lienard systems; LIENARD EQUATION; AVERAGING THEORY;
D O I
10.1007/s12346-024-01048-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations x(center dot)=y,y(center dot)=-x-epsilon<middle dot>(f(x)<middle dot>y+sgn(y)<middle dot>g(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}=y, \ \dot{y}=-x-\varepsilon \cdot (f(x)\cdot y +\textrm{sgn}(y)\cdot g(x))$$\end{document}. Using the averaging method, we were able to generalize a previous result for Li & eacute;nard systems. In our generalization, we consider g as a polynomial of degree m. We conclude that for sufficiently small values of |epsilon|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{\varepsilon }|$$\end{document}, the number hm,n=n2+m2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{m,n}=\left[ \frac{n}{2}\right] +\left[ \frac{m}{2}\right] +1$$\end{document} serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center x(center dot)=y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}=y$$\end{document}, y(center dot)=-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y}=-x$$\end{document}. Furthermore, we demonstrate that it is indeed possible to obtain a system with hm,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{m,n}$$\end{document} limit cycles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Upper bounds on the number of limit cycles in generalized Li,nard equations of odd type
    Kolyutsky, G. A.
    [J]. DOKLADY MATHEMATICS, 2010, 81 (02) : 176 - 179
  • [2] Upper bounds on the number of limit cycles in generalized Liénard equations of odd type
    G. A. Kolyutsky
    [J]. Doklady Mathematics, 2010, 81 : 176 - 179
  • [3] Limit Cycles of a Class of Generalized Liénard Polynomial Equations
    J. Llibre
    A. Makhlouf
    [J]. Journal of Dynamical and Control Systems, 2015, 21 : 189 - 192
  • [4] Limit Cycles of a Class of Generalized Li,nard Polynomial Equations
    Llibre, J.
    Makhlouf, A.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2015, 21 (02) : 189 - 192
  • [5] Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations
    Jaume Llibre
    Marco Antonio Teixeira
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 51 - 66
  • [6] Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations
    Llibre, Jaume
    Teixeira, Marco Antonio
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 51 - 66
  • [7] On the Uniqueness of Limit Cycles in a Generalized Liénard System
    Zhang Daoxiang
    Ping Yan
    [J]. Qualitative Theory of Dynamical Systems, 2019, 18 : 1191 - 1199
  • [8] On the Number of Hyperelliptic Limit Cycles of Liénard Systems
    Xinjie Qian
    Jiazhong Yang
    [J]. Qualitative Theory of Dynamical Systems, 2020, 19
  • [9] Limit Cycles of a Class of Cubic Liénard Equations
    Huatao Jin
    Shuliang Shui
    [J]. Qualitative Theory of Dynamical Systems, 2011, 10 : 317 - 326
  • [10] Fixed and moving limit cycles for Liénard equations
    Armengol Gasull
    Marco Sabatini
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1985 - 2006