Upper bounds on the number of limit cycles in generalized Liénard equations of odd type

被引:0
|
作者
G. A. Kolyutsky
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
来源
Doklady Mathematics | 2010年 / 81卷
关键词
Vector Field; Phase Portrait; DOKLADY Mathematic; Quadratic Domain; Global Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:176 / 179
页数:3
相关论文
共 50 条
  • [41] Small-amplitude limit cycles of polynomial Linard systems
    HAN MaoAn
    TIAN Yun
    YU Pei
    ScienceChina(Mathematics), 2013, 56 (08) : 1546 - 1559
  • [42] Small-amplitude limit cycles of polynomial Liénard systems
    MaoAn Han
    Yun Tian
    Pei Yu
    Science China Mathematics, 2013, 56 : 1543 - 1556
  • [43] Algebraic approximations to bifurcation curves of limit cycles for the Liénard equation
    Giacomini, Hector
    Neukirch, Sébastien
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 244 (1-3): : 53 - 58
  • [44] Small-amplitude limit cycles of polynomial Li,nard systems
    Han MaoAn
    Tian Yun
    Yu Pei
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) : 1543 - 1556
  • [45] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [46] Limit cycles of generalized Lienard equations
    Appl Math Lett, 6 (15):
  • [47] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [48] A new criterion for controlling the number of limit cycles of some generalized Lienard equations
    Gasull, A
    Giacomini, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) : 54 - 73
  • [49] The number of limit cycles in planar systems and generalized Abel equations with monotonous hyperbolicity
    Guillamon, Antoni
    Sabatini, Marco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1941 - 1949
  • [50] The Lower and Upper Bounds of Turan Number for Odd Wheels
    Kim, Byeong Moon
    Song, Byung Chul
    Hwang, Woonjae
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 919 - 932