共 50 条
Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations
被引:0
|作者:
Meilan Qiu
Liquan Mei
Ganshang Yang
机构:
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Yunnan Nationalities University,Department of Mathematics
[3] Yunnan Normal University,Institute of Mathematics
来源:
关键词:
fractional (linear or nonlinear) superdiffusion equation;
fractional drift superdiffusion equation;
Schauder’s fixed point theorem;
Arzelà-Ascoli compactness theorem;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we consider the existence and uniqueness of weak solutions for a class of fractional superdiffusion equations with initial-boundary conditions. For a multidimensional fractional drift superdiffusion equation, we just consider the simplest case with divergence-free drift velocity u∈L2(Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$u \in L^{2}(\Omega)$\end{document} only depending on the spatial variable x. Finally, exploiting the Schauder fixed point theorem combined with the Arzelà-Ascoli compactness theorem, we obtain the existence and uniqueness of weak solutions in the standard Banach space C([0,T];H01(Ω))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C([0,T]; H_{0}^{1}(\Omega))$\end{document} for a class of fractional superdiffusion equations.
引用
收藏
相关论文