Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

被引:0
|
作者
Meilan Qiu
Liquan Mei
Ganshang Yang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Yunnan Nationalities University,Department of Mathematics
[3] Yunnan Normal University,Institute of Mathematics
关键词
fractional (linear or nonlinear) superdiffusion equation; fractional drift superdiffusion equation; Schauder’s fixed point theorem; Arzelà-Ascoli compactness theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence and uniqueness of weak solutions for a class of fractional superdiffusion equations with initial-boundary conditions. For a multidimensional fractional drift superdiffusion equation, we just consider the simplest case with divergence-free drift velocity u∈L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in L^{2}(\Omega)$\end{document} only depending on the spatial variable x. Finally, exploiting the Schauder fixed point theorem combined with the Arzelà-Ascoli compactness theorem, we obtain the existence and uniqueness of weak solutions in the standard Banach space C([0,T];H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C([0,T]; H_{0}^{1}(\Omega))$\end{document} for a class of fractional superdiffusion equations.
引用
收藏
相关论文
共 50 条