Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

被引:0
|
作者
Meilan Qiu
Liquan Mei
Ganshang Yang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Yunnan Nationalities University,Department of Mathematics
[3] Yunnan Normal University,Institute of Mathematics
关键词
fractional (linear or nonlinear) superdiffusion equation; fractional drift superdiffusion equation; Schauder’s fixed point theorem; Arzelà-Ascoli compactness theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence and uniqueness of weak solutions for a class of fractional superdiffusion equations with initial-boundary conditions. For a multidimensional fractional drift superdiffusion equation, we just consider the simplest case with divergence-free drift velocity u∈L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in L^{2}(\Omega)$\end{document} only depending on the spatial variable x. Finally, exploiting the Schauder fixed point theorem combined with the Arzelà-Ascoli compactness theorem, we obtain the existence and uniqueness of weak solutions in the standard Banach space C([0,T];H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C([0,T]; H_{0}^{1}(\Omega))$\end{document} for a class of fractional superdiffusion equations.
引用
收藏
相关论文
共 50 条
  • [31] Existence and uniqueness of solutions to fractional differential equations with fractional boundary conditions
    Saha, Kiran Kumar
    Sukavanam, N.
    Pan, Sonjoy
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 72 : 147 - 155
  • [32] EXISTENCE OF A WEAK SOLUTION FOR A CLASS OF FRACTIONAL LAPLACIAN EQUATIONS
    Raghavendra, V.
    Kar, Rasmita
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 102 (03) : 392 - 404
  • [33] Positive solutions for a class of biharmonic equations: Existence and uniqueness
    Feng, Meiqiang
    Chen, Haiping
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [34] EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A CLASS OF OPERATOR-EQUATIONS
    LI, SF
    CHINESE SCIENCE BULLETIN, 1992, 37 (19): : 1585 - 1589
  • [35] On the existence of solutions for a class of fractional differential equations
    Wang, JinRong
    Dong, XiWang
    Wei, Wei
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 15 - 24
  • [36] EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS TO VISCOUS PRIMITIVE EQUATIONS FOR A CERTAIN CLASS OF DISCONTINUOUS INITIAL DATA
    Li, Jinkai
    Titi, Edriss S.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) : 1 - 28
  • [37] Existence and uniqueness result for a class of sequential fractional differential equations
    Qingdong Li
    Han Su
    Zhongli Wei
    Li, Q. (qingdonglee@gmail.com), 1600, Springer Verlag (38): : 1 - 2
  • [38] Existence and uniqueness of solution for a class of nonlinear fractional differential equations
    Ma, Shichang
    Xu, Yufeng
    Yue, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 11
  • [39] Existence and uniqueness of solution for a class of nonlinear fractional differential equations
    Shichang Ma
    Yufeng Xu
    Wei Yue
    Advances in Difference Equations, 2012
  • [40] On the global existence and uniqueness of weak solutions to the nonstationary semiconductor equations
    Department of Mathematics, Southeast University, 210096, Nanjing, China
    不详
    Applied Mathematics and Computation (New York), 2000, 114 (02): : 125 - 133