Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations

被引:20
|
作者
Chen, Churong [1 ]
Bohner, Martin [2 ]
Jia, Baoguo [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[3] Sun Yat Sen Univ, Prov Key Lab Computat Sci, Guangzhou, Peoples R China
关键词
Nabla difference equation; existence and uniqueness; Caputo operator;
D O I
10.3906/mat-1904-29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two cases of nabla fractional Caputo difference equations. Our main tool used is a Banach fixed point theorem, which allows us to give some existence and uniqueness theorems of solutions for discrete fractional Caputo equations. In addition, we develop the existence results for delta fractional Caputo difference equations, which correct ones obtained in Chen and Zhou. We present two examples to illustrate our main results.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 50 条
  • [1] Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with ψ-Caputo derivative
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Graef, John
    ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (03) : 575 - 587
  • [2] EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NABLA FRACTIONAL DIFFERENCE EQUATIONS
    Mert, Raziye
    Peterson, Allan
    Abdeljawad, Thabet
    Erbe, Lynn
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (01): : 183 - 194
  • [3] SOLUTIONS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS - EXISTENCE AND UNIQUENESS
    Jonnalagadda, Jagan Mohan
    OPUSCULA MATHEMATICA, 2016, 36 (02) : 215 - 238
  • [4] Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Ryoo, Cheon Seoung
    Hamed, Y. S.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (06)
  • [5] Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives
    Gambo, Y. Y.
    Ameen, R.
    Jarad, Fahd
    Abdeljawad, T.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives
    Y. Y. Gambo
    R. Ameen
    F. Jarad
    T. Abdeljawad
    Advances in Difference Equations, 2018
  • [7] Existence and uniqueness of positive solutions for first-order nonlinear Liouville–Caputo fractional differential equations
    Abdelouaheb Ardjouni
    Ahcene Djoudi
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 381 - 390
  • [8] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
    Ulke, Oykum
    Topal, Fatma Serap
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 473 - 487
  • [9] Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations
    Dimitrov, Nikolay D.
    Jonnalagadda, Jagan Mohan
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [10] EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS OF CAPUTO-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Sin, Chung-Sik
    Zheng, Liancun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 765 - 774