UNIQUENESS AND EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Nyamoradi, Nemat [1 ]
Bashiri, Tahereh [2 ]
Vaezpour, S. Mansour [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
[3] Cankaya Univ, Dept Math & Comp Sci, Fac Art & Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, R-76900 Magurele, Romania
[5] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
关键词
Existence of solutions; Banachs fixed point theorem; Leray-Schauders alternative; BOUNDARY-VALUE PROBLEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of positive solutions for the singular fractional boundary value problem [GRAPHICS] where 1 < alpha <= 2, 0 < xi <= 1/2, a is an element of [0, infinity), 1 < alpha - delta < 2, 0 < beta(i) < 1, A, B-i, 1 <= i <= k, are real constant, D-alpha is the Reimann-Liouville fractional derivative of order alpha. By using the Banach's fixed point theorem and Leray-Schauder's alternative, the existence of positive solutions is obtained. At last, an example is given for illustration.
引用
收藏
页数:13
相关论文
共 50 条