Independent Double Roman Domination in Graphs

被引:0
|
作者
Hamidreza Maimani
Mostafa Momeni
Sakineh Nazari Moghaddam
Farhad Rahimi Mahid
Seyed Mahmoud Sheikholeslami
机构
[1] Shahid Rajaee Teacher Training University,Department of Basic Sciences
[2] Azarbaijan Shahid Madani University,Department of Mathematics
关键词
Independent double Roman domination; Independent Roman domination; NP-complete; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a double Roman dominating function (DRDF) on G is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2, 3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v) = 0$$\end{document}, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v has at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. A DRDF f is called an independent double Roman dominating function (IDRDF) if the set of vertices with positive weight is independent. The weight of an IDRDF is the sum f(V)=∑v∈Vf(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f (V) =\sum _{v\in V} f (v)$$\end{document}. The independent double Roman domination number idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is the minimum weight of an IDRDF on G. In this paper, we initiate the study of independent double Roman domination. We first show that the decision problem associated with idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is NP-complete for bipartite graphs and then we present some sharp bounds on the independent double Roman domination number.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [41] Double Roman domination subdivision number in graphs
    Amjadi, J.
    Sadeghi, H.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [42] Signed double Roman domination on cubic graphs
    Iurlano, Enrico
    Zec, Tatjana
    Djukanovic, Marko
    Raidl, Guenther R.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 471
  • [43] ROMAN DOMINATION NUMBER OF DOUBLE FAN GRAPHS
    Raji, J. Jannet
    Meenakshi, S.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 485 - 491
  • [44] Algorithmic results on double Roman domination in graphs
    S. Banerjee
    Michael A. Henning
    D. Pradhan
    Journal of Combinatorial Optimization, 2020, 39 : 90 - 114
  • [46] SOME PROGRESS ON THE DOUBLE ROMAN DOMINATION IN GRAPHS
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 41 - 53
  • [47] FURTHER RESULTS ON THE DOUBLE ROMAN DOMINATION IN GRAPHS
    Omar, A.
    Bouchou, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 421 - 430
  • [48] Covering total double Roman domination in graphs
    Teymourzadeh, A.
    Mojdeh, D. A.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 115 - 125
  • [49] Algorithmic results on double Roman domination in graphs
    Banerjee, S.
    Henning, Michael A.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 90 - 114
  • [50] Roman Domination and Double Roman Domination Numbers of Sierpinski Graphs S(Kn, t)
    Liu, Chia-An
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4043 - 4058