Independent Double Roman Domination in Graphs

被引:0
|
作者
Hamidreza Maimani
Mostafa Momeni
Sakineh Nazari Moghaddam
Farhad Rahimi Mahid
Seyed Mahmoud Sheikholeslami
机构
[1] Shahid Rajaee Teacher Training University,Department of Basic Sciences
[2] Azarbaijan Shahid Madani University,Department of Mathematics
关键词
Independent double Roman domination; Independent Roman domination; NP-complete; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a double Roman dominating function (DRDF) on G is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2, 3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v) = 0$$\end{document}, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v has at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. A DRDF f is called an independent double Roman dominating function (IDRDF) if the set of vertices with positive weight is independent. The weight of an IDRDF is the sum f(V)=∑v∈Vf(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f (V) =\sum _{v\in V} f (v)$$\end{document}. The independent double Roman domination number idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is the minimum weight of an IDRDF on G. In this paper, we initiate the study of independent double Roman domination. We first show that the decision problem associated with idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is NP-complete for bipartite graphs and then we present some sharp bounds on the independent double Roman domination number.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [21] Majority double Roman domination in graphs
    Prabhavathy, S. Anandha
    Hamid, I. Sahul
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (06)
  • [22] The Restrained Double Roman Domination in Graphs
    Xi, Changqing
    Yue, Jun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [23] Global double Roman domination in graphs
    Shao, Zehui
    Sheikholeslami, S. M.
    Nazari-Moghaddam, S.
    Wang, Shaohui
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (01): : 31 - 44
  • [24] Double Roman domination in some graphs
    Meena, J.
    Mai, T. N. M. Malini
    Suresh, M. L.
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [25] On the Global Double Roman Domination of Graphs
    Guoliang Hao
    Xiaodan Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3007 - 3018
  • [26] Total double Roman domination in graphs
    Hao, Guoliang
    Volkmann, Lutz
    Mojdeh, Doost Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (01) : 27 - 39
  • [27] Signed double Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 1 - 11
  • [28] Signed Double Roman Domination of Graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    FILOMAT, 2019, 33 (01) : 121 - 134
  • [29] On the Global Double Roman Domination of Graphs
    Hao, Guoliang
    Chen, Xiaodan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 3007 - 3018
  • [30] Outer independent double Roman domination
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364