Independent Double Roman Domination in Graphs

被引:0
|
作者
Hamidreza Maimani
Mostafa Momeni
Sakineh Nazari Moghaddam
Farhad Rahimi Mahid
Seyed Mahmoud Sheikholeslami
机构
[1] Shahid Rajaee Teacher Training University,Department of Basic Sciences
[2] Azarbaijan Shahid Madani University,Department of Mathematics
关键词
Independent double Roman domination; Independent Roman domination; NP-complete; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a double Roman dominating function (DRDF) on G is a function f:V→{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : V \rightarrow \{0, 1, 2, 3\}$$\end{document} having the property that if f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v) = 0$$\end{document}, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)=3$$\end{document}, and if f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, then vertex v has at least one neighbor w with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. A DRDF f is called an independent double Roman dominating function (IDRDF) if the set of vertices with positive weight is independent. The weight of an IDRDF is the sum f(V)=∑v∈Vf(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f (V) =\sum _{v\in V} f (v)$$\end{document}. The independent double Roman domination number idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is the minimum weight of an IDRDF on G. In this paper, we initiate the study of independent double Roman domination. We first show that the decision problem associated with idR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{dR}(G)$$\end{document} is NP-complete for bipartite graphs and then we present some sharp bounds on the independent double Roman domination number.
引用
收藏
页码:543 / 555
页数:12
相关论文
共 50 条
  • [31] On the Outer-Independent Roman Domination in Graphs
    Martinez, Abel Cabrera
    Garcia, Suitberto Cabrera
    Carrion Garcia, Andres
    Grisales del Rio, Angela Maria
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [32] A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    OPUSCULA MATHEMATICA, 2012, 32 (04) : 715 - 718
  • [33] A Short Note on Double Roman Domination in Graphs
    Omar, Abdelhak
    Bouchou, Ahmed
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [34] A Note on the Double Roman Domination Number of Graphs
    Chen, Xue-gang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 205 - 212
  • [35] Discharging Approach for Double Roman Domination in Graphs
    Shao, Zehui
    Wu, Pu
    Jiang, Huiqin
    Li, Zepeng
    Zerovnik, Janez
    Zhang, Xiujun
    IEEE ACCESS, 2018, 6 : 63345 - 63351
  • [36] Critical concept for double Roman domination in graphs
    Nazari-Moghaddam, S.
    Volkmann, L.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [37] Double Roman Domination in Generalized Petersen Graphs
    Gao, Hong
    Huang, Jiahuan
    Yang, Yuansheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 885 - 894
  • [38] A Note on the Double Roman Domination Number of Graphs
    Xue-gang Chen
    Czechoslovak Mathematical Journal, 2020, 70 : 205 - 212
  • [39] Double Roman Domination in Generalized Petersen Graphs
    Hong Gao
    Jiahuan Huang
    Yuansheng Yang
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 885 - 894
  • [40] Quasi total double Roman domination in graphs
    Kosari, S.
    Babaei, S.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (02) : 171 - 180