Algorithmic results on double Roman domination in graphs

被引:0
|
作者
S. Banerjee
Michael A. Henning
D. Pradhan
机构
[1] Indian Institute of Technology (ISM),Mathematics of Pure and Applied Mathematics
[2] University of Johannesburg,undefined
来源
关键词
Domination; Roman domination; Double Roman domination; Polynomial time algorithm; NP-complete;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}, a function f:V⟶{0,1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\longrightarrow \{0,1,2,3\}$$\end{document} is called a double Roman dominating function on G if (i) for every v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} with f(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=0$$\end{document}, there are at least two neighbors of v that are assigned 2 under f or at least a neighbor of v that is assigned 3 under f, and (ii) for every vertex v with f(v)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=1$$\end{document}, there is at least one neighbor w of v with f(w)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)\ge 2$$\end{document}. The weight of a double Roman dominating function f is f(V)=∑u∈Vf(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(V)=\sum _{u\in V}f(u)$$\end{document}. The double Roman domination number of G, denoted by γdR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{dR}(G)$$\end{document} is the minimum weight of a double Roman dominating function on G. For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}, Min-Double-RDF is to find a double Roman dominating function f with f(V)=γdR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(V)=\gamma _{dR}(G)$$\end{document}. The decision version of Min-Double-RDF is shown to be NP-complete for chordal graphs and bipartite graphs. In this paper, we first strengthen the known NP-completeness of the decision version of Min-Double-RDF by showing that the decision version of Min-Double-RDF remains NP-complete for undirected path graphs, chordal bipartite graphs, and circle graphs. We then present linear time algorithms for computing the double Roman domination number in proper interval graphs and block graphs. We then discuss on the approximability of Min-Double-RDF and present a 2-approximation algorithm in 3-regular bipartite graphs.
引用
收藏
页码:90 / 114
页数:24
相关论文
共 50 条
  • [1] Algorithmic results on double Roman domination in graphs
    Banerjee, S.
    Henning, Michael A.
    Pradhan, D.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 90 - 114
  • [3] Algorithmic results for weak Roman domination problem in graphs
    Paul, Kaustav
    Sharma, Ankit
    Pandey, Arti
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 359 : 278 - 289
  • [4] Algorithmic aspects of Roman domination in graphs
    Chakradhar Padamutham
    Venkata Subba Reddy Palagiri
    [J]. Journal of Applied Mathematics and Computing, 2020, 64 : 89 - 102
  • [5] Algorithmic aspects of Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 64 (1-2) : 89 - 102
  • [6] Algorithmic Aspects of Outer-Independent Double Roman Domination in Graphs
    Sharma, Amit
    Reddy, P. Venkata Subba
    Arumugam, S.
    Kumar, Jakkepalli Pavan
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [7] Algorithm and hardness results in double Roman domination of graphs
    Poureidi, Abolfazl
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 911 : 70 - 79
  • [8] On algorithmic complexity of double Roman domination
    Poureidi, Abolfazl
    Rad, Nader Jafari
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 : 539 - 551
  • [9] Algorithmic aspects of Roman {3}-domination in graphs
    Chakradhar, Padamutham
    Reddy, Palagiri Venkata Subba
    [J]. RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2277 - 2291
  • [10] On the double Roman domination of graphs
    Yue, Jun
    Wei, Meiqin
    Li, Min
    Liu, Guodong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 669 - 675