Constructive Approximation in de Branges–Rovnyak Spaces

被引:0
|
作者
Omar El-Fallah
Emmanuel Fricain
Karim Kellay
Javad Mashreghi
Thomas Ransford
机构
[1] Université Mohamed V,Laboratoire Analyse et Applications (URAC/03)
[2] Université des Sciences et Technologies Lille 1,Laboratoire Paul Painlevé, UFR des Mathématiques
[3] Université de Bordeaux,Institut de Mathématiques de Bordeaux
[4] Université Laval,Département de mathématiques et de statistique
来源
关键词
De Branges–Rovnyak space; Hardy space; Toeplitz operator; 46E22; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates fr(z):=f(rz)(r<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_r(z):=f(rz)~(r<1)$$\end{document}. We show that this is not the case for the de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. More precisely, we exhibit a space H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document} in which the polynomials are dense and a function f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document} such that limr→1-‖fr‖H(b)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty $$\end{document}. On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. If (hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_n)$$\end{document} is a sequence in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document} such that ‖hn‖H∞≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert h_n\Vert _{H^\infty }\le 1$$\end{document} and hn(0)→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_n(0)\rightarrow 1$$\end{document}, then ‖Th¯nf-f‖H(b)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0$$\end{document} for all f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document}. Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document}, then the polynomials are dense in H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [41] WEIGHTED NORM INEQUALITIES FOR DE BRANGES-ROVNYAK SPACES AND THEIR APPLICATIONS
    Baranov, Anton
    Fricain, Emmanuel
    Mashreghi, Javad
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (01) : 125 - 155
  • [42] SCHUR MULTIPLIERS AND DE BRANGES-ROVNYAK SPACES: THE MULTISCALE CASE
    Alpay, Daniel
    Dijksma, Aad
    Volok, Dan
    JOURNAL OF OPERATOR THEORY, 2009, 61 (01) : 87 - 118
  • [43] Abstract Interpolation in Vector-Valued de Branges–Rovnyak Spaces
    Joseph A. Ball
    Vladimir Bolotnikov
    Sanne ter Horst
    Integral Equations and Operator Theory, 2011, 70 : 227 - 263
  • [44] De Branges-Rovnyak Spaces Which are Complete Nevanlinna-Pick Spaces
    Ahmed, Hamidul
    Das, B. Krishna
    Panja, Samir
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [45] PONTRYAGIN-DE BRANGES-ROVNYAK SPACES OF SLICE HYPERHOLOMORPHIC FUNCTIONS
    Alpay, Daniel
    Colombo, Fabrizio
    Sabadini, Irene
    JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 : 87 - 125
  • [46] Exponentials of de Branges-Rovnyak kernels
    Kuwahara, Shuhei
    Seto, Michio
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (02): : 447 - 455
  • [47] Backward shift operator and finite dimensional de Branges Rovnyak spaces in the ball
    Alpay, D
    Dubi, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 : 277 - 285
  • [48] Pontryagin-de Branges-Rovnyak spaces of slice hyperholomorphic functions
    Daniel Alpay
    Fabrizio Colombo
    Irene Sabadini
    Journal d'Analyse Mathématique, 2013, 121 : 87 - 125
  • [49] De Branges–Rovnyak Spaces Which are Complete Nevanlinna–Pick SpacesDe Branges–Rovnyak Spaces Which are Complete Nevanlinna–Pick SpacesH. Ahmed et al.
    Hamidul Ahmed
    B. Krishna Das
    Samir Panja
    The Journal of Geometric Analysis, 2025, 35 (2):
  • [50] Abstract Interpolation in Vector-Valued de Branges-Rovnyak Spaces
    Ball, Joseph A.
    Bolotnikov, Vladimir
    ter Horst, Sanne
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 70 (02) : 227 - 263