Constructive Approximation in de Branges–Rovnyak Spaces

被引:0
|
作者
Omar El-Fallah
Emmanuel Fricain
Karim Kellay
Javad Mashreghi
Thomas Ransford
机构
[1] Université Mohamed V,Laboratoire Analyse et Applications (URAC/03)
[2] Université des Sciences et Technologies Lille 1,Laboratoire Paul Painlevé, UFR des Mathématiques
[3] Université de Bordeaux,Institut de Mathématiques de Bordeaux
[4] Université Laval,Département de mathématiques et de statistique
来源
关键词
De Branges–Rovnyak space; Hardy space; Toeplitz operator; 46E22; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates fr(z):=f(rz)(r<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_r(z):=f(rz)~(r<1)$$\end{document}. We show that this is not the case for the de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. More precisely, we exhibit a space H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document} in which the polynomials are dense and a function f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document} such that limr→1-‖fr‖H(b)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty $$\end{document}. On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. If (hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_n)$$\end{document} is a sequence in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document} such that ‖hn‖H∞≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert h_n\Vert _{H^\infty }\le 1$$\end{document} and hn(0)→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_n(0)\rightarrow 1$$\end{document}, then ‖Th¯nf-f‖H(b)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0$$\end{document} for all f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document}. Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document}, then the polynomials are dense in H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [31] Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?
    Costara, Constantin
    Ransford, Thomas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) : 3204 - 3218
  • [32] Clark measures and de Branges-Rovnyak spaces in several variables
    Aleksandrov, Aleksei B.
    Doubtsov, Evgueni
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 212 - 221
  • [33] de Branges Rovnyak spaces and Schur functions: the hyperholomorphic case.
    Alpay, D
    Shapiro, M
    Volok, D
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (06) : 437 - 442
  • [34] Weighted Dirichlet spaces that are de Branges-Rovnyak spaces with equivalent norms
    Pouliasis, Stamatis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (03)
  • [35] Mixed de Branges-Rovnyak and sub-Bergman spaces
    Gu, Caixing
    Hwang, In Sung
    Lee, Woo Young
    Park, Jaehui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 697 : 443 - 467
  • [36] Power-Series Summability Methods in de Branges–Rovnyak Spaces
    Javad Mashreghi
    Pierre-Olivier Parisé
    Thomas Ransford
    Integral Equations and Operator Theory, 2022, 94
  • [37] Multipliers of de Branges-Rovnyak spaces in H-2
    Suarez, Fernando Daniel
    REVISTA MATEMATICA IBEROAMERICANA, 1995, 11 (02) : 375 - 415
  • [38] Cyclicity in non-extreme de Branges-Rovnyak spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    Seco, Daniel
    INVARIANT SUBSPACES OF THE SHIFT OPERATOR, 2015, 638 : 131 - 136
  • [39] On a Polyanalytic Approach to Noncommutative de Branges–Rovnyak Spaces and Schur Analysis
    Daniel Alpay
    Fabrizio Colombo
    Kamal Diki
    Irene Sabadini
    Integral Equations and Operator Theory, 2021, 93
  • [40] EXAMPLES OF DE BRANGES-ROVNYAK SPACES GENERATED BY NONEXTREME FUNCTIONS
    Lanucha, Bartosz
    Nowak, Maria T.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 449 - 457