Constructive Approximation in de Branges–Rovnyak Spaces

被引:0
|
作者
Omar El-Fallah
Emmanuel Fricain
Karim Kellay
Javad Mashreghi
Thomas Ransford
机构
[1] Université Mohamed V,Laboratoire Analyse et Applications (URAC/03)
[2] Université des Sciences et Technologies Lille 1,Laboratoire Paul Painlevé, UFR des Mathématiques
[3] Université de Bordeaux,Institut de Mathématiques de Bordeaux
[4] Université Laval,Département de mathématiques et de statistique
来源
关键词
De Branges–Rovnyak space; Hardy space; Toeplitz operator; 46E22; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates fr(z):=f(rz)(r<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_r(z):=f(rz)~(r<1)$$\end{document}. We show that this is not the case for the de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. More precisely, we exhibit a space H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document} in which the polynomials are dense and a function f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document} such that limr→1-‖fr‖H(b)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty $$\end{document}. On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. If (hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_n)$$\end{document} is a sequence in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document} such that ‖hn‖H∞≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert h_n\Vert _{H^\infty }\le 1$$\end{document} and hn(0)→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_n(0)\rightarrow 1$$\end{document}, then ‖Th¯nf-f‖H(b)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0$$\end{document} for all f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document}. Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document}, then the polynomials are dense in H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [21] Boundary Behavior of Functions in the de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Javad Mashreghi
    Complex Analysis and Operator Theory, 2008, 2 : 87 - 97
  • [22] Interpolating and uniqueness sequences for de Branges–Rovnyak spaces
    Ching-on Lo
    Anthony Wai-keung Loh
    Ricerche di Matematica, 2023, 72 : 33 - 44
  • [23] Embedding model and de Branges-Rovnyak spaces in Dirichlet spaces
    Bellavita, Carlo
    Dellepiane, Eugenio
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (02) : 228 - 246
  • [24] Nonextreme de Branges-Rovnyak Spaces as Models for Contractions
    Mashreghi, Javad
    Timotin, Dan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 137 - 152
  • [25] Dirichlet Spaces with Superharmonic Weights and de Branges-Rovnyak Spaces
    El-Fallah, O.
    Kellay, K.
    Klaja, H.
    Mashreghi, J.
    Ransford, T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (01) : 97 - 107
  • [26] Boundary Behavior of Functions in the de Branges-Rovnyak Spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 87 - 97
  • [27] Density of diskalgebra functions in de Branges-Rovnyak spaces
    Aleman, Alexandru
    Malman, Bartosz
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (08) : 871 - 875
  • [28] Interpolating and uniqueness sequences for de Branges-Rovnyak spaces
    Lo, Ching-on
    Loh, Anthony Wai-keung
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 33 - 44
  • [29] Outer Functions and Divergence in de Branges-Rovnyak Spaces
    Mashreghi, Javad
    Ransford, Thomas
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 987 - 995
  • [30] Two-Isometries and de Branges-Rovnyak Spaces
    Kellay, Karim
    Zarrabi, Mohamed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (06) : 1325 - 1335